Prevention of dopaminergic neuronal death by cyclic AMP in mixed neuronal/glial mesencephalic cultures requires the repression of presumptive astrocytes.
نویسندگان
چکیده
Cyclic AMP-elevating agents are highly effective in preventing the loss of dopaminergic neurons that occurs spontaneously in neuronal-glial mesencephalic cultures. We demonstrate here that cAMP causes a concomitant decline in the number of dividing non-neuronal cells, suggesting that inhibition of proliferation contributes to neuroprotection. Consistent with this hypothesis, a transient treatment with the antimitotic cytosine arabinoside, at concentrations that induce long-term repression of glial cell proliferation, mimicked the neuroprotective action of cAMP and also obviated the need for the cyclic nucleotide. Treatment with cAMP-elevating agents reduced the population of OX-42-positive microglial cells and the number of immature astrocytes expressing vimentin and low levels of the astrocytic marker glial fibrillary acidic protein. The effect on the immature astrocytes, however, seemed essential for neuroprotection. Ciliary neurotrophic factor and leukemia inhibitory factor, which stimulate astrocyte differentiation without reducing cell proliferation, failed to reproduce the protective effects of the cyclic nucleotide. Cyclic AMP did not operate by counteracting the action of the astrocyte mitogen epidermal growth factor or by reducing activation of the mitogen-activated protein kinase signaling pathway. The neuroprotective and antiproliferative actions of cAMP, however, were closely mimicked by olomoucine and roscovitine, potent inhibitors of the cyclin-dependent kinase CDK1 that are structurally related to cAMP. Measurement of CDK1 activity confirmed that neuroprotection was closely correlated with inhibition of this kinase by cAMP. In summary, neuroprotection of mesencephalic dopaminergic neurons by cAMP most probably requires the repression of presumptive astrocytes through inhibition of CDK1.
منابع مشابه
Acute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures
Objective(s):Theneuroprotective effect of lithium has been attributed to its therapeutic action. However, the role of glial cells particularly astrocytes, and the possible interactions between neurons and astrocytes in neuroprotective effects of lithium have been disregarded. Thus, the aim of this study was to evaluate the direct effects of lithium on brain derived neurotrophic factor (BDNF) an...
متن کاملEffects of spironolactone and fludrocortisone on neuronal and glial toxicity induced by N-methyl-D-Aspartate and chloroquine in cell culture
Spironolactone has produced beneficial effects in animal models of neurodegenerative disorders. However, the underlying mechanisms of this agent on neurons and glia are mostly unknown. Therefore, we aimed to show the effects of spironolactone and fludrocortisone, a mineralocorticosteroid receptor agonist, on neuronal and glial toxicity induced by N-methyl-D-aspartate (NMDA) activation and chlor...
متن کاملIncreased bcl-2 Protein Levels in Rat Primary Astrocyte Culture Following Chronic Lithium Treatment
Background: B cell CLL/lymphoma 2 protein, bcl-2, is an important anti-apoptotic factor that has been implicated in lithium’s neuroprotective effect. However, most studies have focused on assessing the effects of lithium in neurons, ignoring examination of bcl-2 in astrocytes, which also influence neuronal survival and are affected in bipolar disorder. The aim of this study was to evaluate whet...
متن کاملCB2 Receptor Agonists Protect Human Dopaminergic Neurons against Damage from HIV-1 gp120
Despite the therapeutic impact of anti-retroviral therapy, HIV-1-associated neurocognitive disorder (HAND) remains a serious threat to AIDS patients, and there currently remains no specific therapy for the neurological manifestations of HIV-1. Recent work suggests that the nigrostriatal dopaminergic area is a critical brain region for the neuronal dysfunction and death seen in HAND and that hum...
متن کاملThe neurotrophic effects of fibroblast growth factors on dopaminergic neurons in vitro are mediated by mesencephalic glia.
Neurotrophic support is generally believed to result from a direct action of growth factors on developing neurons. However, there is increasing evidence that growth factors can indirectly affect neuronal development by glial-mediated processes. To investigate a possible role of glia in mediating neurotrophic effects on dopaminergic neurons, four purified growth factors were screened for dual ef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 64 3 شماره
صفحات -
تاریخ انتشار 2003