Probing 2D black phosphorus by quantum capacitance measurements.
نویسندگان
چکیده
Two-dimensional materials and their heterostructures have emerged as a new class of materials, not only for fundamental physics but also for electronic and optoelectronic applications. Black phosphorus (BP) is a relatively new addition to this class of materials. Its strong in-plane anisotropy makes BP a unique material for making conceptually new types of electronic devices. However, the global density of states (DOS) of BP in device geometry has not been measured experimentally. Here, we report the quantum capacitance measurements together with the conductance measurements on an hBN-protected few-layer BP (∼six layers) in a dual-gated field effect transistor (FET) geometry. The measured DOS from our quantum capacitance is compared with density functional theory (DFT). Our results reveal that the transport gap for quantum capacitance is smaller than that in conductance measurements due to the presence of localized states near the band edge. The presence of localized states is confirmed by the variable range hopping seen in our temperature dependence conductivity. A large asymmetry is observed between the electron and hole side. This asymmetric nature is attributed to the anisotropic band dispersion of BP. Our measurements establish the uniqueness of quantum capacitance in probing the localized states near the band edge, hitherto not seen in conductance measurements.
منابع مشابه
Quantum capacitance measurement for a black phosphorus field-effect transistor.
The unique electrical, optical and thermal properties of black phosphorus have triggered the development of black phosphorus transistors as well as a wide range of other relevant applications. However, there are still challenges in understanding and modeling gated black phosphorus, among which the exploration of quantum capacitance is crucial. Understanding quantum capacitance requires specifie...
متن کاملNegative compressibility in graphene-terminated black phosphorus heterostructures
Negative compressibility in graphene-terminated black phosphorus heterostructures. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Negative compressibility is a ma...
متن کاملQuantum-confinement and Structural Anisotropy result in Electrically-Tunable Dirac Cone in Few-layer Black Phosphorous
Two-dimensional (2D) materials are well-known to exhibit interesting phenomena due to quantum confinement. Here, we show that quantum confinement, together with structural anisotropy, result in an electric-field-tunable Dirac cone in 2D black phosphorus. Using density functional theory calculations, we find that an electric field, E ext, applied normal to a 2D black phosphorus thin film, can re...
متن کاملField Effect Optoelectronic Modulation of Quantum-Confined Carriers in Black Phosphorus.
We report measurements of the infrared optical response of thin black phosphorus under field-effect modulation. We interpret the observed spectral changes as a combination of an ambipolar Burstein-Moss (BM) shift of the absorption edge due to band-filling under gate control, and a quantum confined Franz-Keldysh (QCFK) effect, phenomena that have been proposed theoretically to occur for black ph...
متن کاملSurface transport and quantum Hall effect in ambipolar black phosphorus double quantum wells
Quantum wells (QWs) constitute one of the most important classes of devices in the study of two-dimensional (2D) systems. In a double-layer QW, the additional "which-layer" degree of freedom gives rise to celebrated phenomena, such as Coulomb drag, Hall drag, and exciton condensation. We demonstrate facile formation of wide QWs in few-layer black phosphorus devices that host double layers of ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanotechnology
دوره 26 48 شماره
صفحات -
تاریخ انتشار 2015