Insulin Resistance Is Not Associated with an Impaired Mitochondrial Function in Contracting Gastrocnemius Muscle of Goto-Kakizaki Diabetic Rats In Vivo
نویسندگان
چکیده
Insulin resistance, altered lipid metabolism and mitochondrial dysfunction in skeletal muscle would play a major role in type 2 diabetes mellitus (T2DM) development, but the causal relationships between these events remain conflicting. To clarify this issue, gastrocnemius muscle function and energetics were investigated throughout a multidisciplinary approach combining in vivo and in vitro measurements in Goto-Kakizaki (GK) rats, a non-obese T2DM model developing peripheral insulin resistant without abnormal level of plasma non-esterified fatty acids (NEFA). Wistar rats were used as controls. Mechanical performance and energy metabolism were assessed strictly non-invasively using magnetic resonance (MR) imaging and 31-phosphorus MR spectroscopy (31P-MRS). Compared with control group, plasma insulin and glucose were respectively lower and higher in GK rats, but plasma NEFA level was normal. In resting GK muscle, phosphocreatine content was reduced whereas glucose content and intracellular pH were both higher. However, there were not differences between both groups for basal oxidative ATP synthesis rate, citrate synthase activity, and intramyocellular contents for lipids, glycogen, ATP and ADP (an important in vivo mitochondrial regulator). During a standardized fatiguing protocol (6 min of maximal repeated isometric contractions electrically induced at a frequency of 1.7 Hz), mechanical performance and glycolytic ATP production rate were reduced in diabetic animals whereas oxidative ATP production rate, maximal mitochondrial capacity and ATP cost of contraction were not changed. These findings provide in vivo evidence that insulin resistance is not caused by an impairment of mitochondrial function in this diabetic model.
منابع مشابه
A Combination of Nutriments Improves Mitochondrial Biogenesis and Function in Skeletal Muscle of Type 2 Diabetic Goto–Kakizaki Rats
BACKGROUND Recent evidence indicates that insulin resistance in skeletal muscle may be related to reduce mitochondrial number and oxidation capacity. However, it is not known whether increasing mitochondrial number and function improves insulin resistance. In the present study, we investigated the effects of a combination of nutrients on insulin resistance and mitochondrial biogenesis/function ...
متن کاملEffect of Eight Weeks of High Intensity Interval Training on Insulin Resistance and IRS1 Gene Expression in Gastrocnemius Muscle of Obese Wistar Rats
Background and objectives: The role of genetic components in expression of proteins involved in signaling pathways of fat and carbohydrate metabolism has been well-demonstrated. The aim of this study was to determine effects of high intensity interval training (HIIT) on glucose, insulin, and insulin resistance levels as well as IRS1 expression in gastrocnemius muscle of obese Wistar rats. Meth...
متن کاملMitochondrial function assessed by 31P MRS and BOLD MRI in non‐obese type 2 diabetic rats
The study aims to characterize age-associated changes in skeletal muscle bioenergetics by evaluating the response to ischemia-reperfusion in the skeletal muscle of the Goto-Kakizaki (GK) rats, a rat model of non-obese type 2 diabetes (T2D). (31)P magnetic resonance spectroscopy (MRS) and blood oxygen level-dependent (BOLD) MRI was performed on the hindlimb of young (12 weeks) and adult (20 week...
متن کاملInsulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats.
Type II diabetic Goto-Kakizaki (GK) rats were insulin-resistant in euglycemic-hyperinsulinemic clamp studies. We therefore examined insulin signaling systems in control Wistar and diabetic GK rats. Glycerol-3-phosphate acyltransferase (G3PAT), which is activated by headgroup mediators released from glycosyl-phosphatidylinositol (GPI), was activated by insulin in intact and cell-free adipocyte p...
متن کاملEnhanced mitochondrial testicular antioxidant capacity in Goto-Kakizaki diabetic rats: role of coenzyme Q.
Because diabetes mellitus is associated with impairment of testicular function, ultimately leading to reduced fertility, this study was conducted to evaluate the existence of a cause-effect relationship between increased oxidative stress in diabetes and reduced mitochondrial antioxidant capacity. The susceptibility to oxidative stress and antioxidant capacity (in terms of glutathione, coenzyme ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015