A Fast Map Merging Algorithm in the Field of Multirobot SLAM
نویسندگان
چکیده
In recent years, the research on single-robot simultaneous localization and mapping (SLAM) has made a great success. However, multirobot SLAM faces many challenging problems, including unknown robot poses, unshared map, and unstable communication. In this paper, a map merging algorithm based on virtual robot motion is proposed for multi-robot SLAM. The thinning algorithm is used to construct the skeleton of the grid map's empty area, and a mobile robot is simulated in one map. The simulated data is used as information sources in the other map to do partial map Monte Carlo localization; if localization succeeds, the relative pose hypotheses between the two maps can be computed easily. We verify these hypotheses using the rendezvous technique and use them as initial values to optimize the estimation by a heuristic random search algorithm.
منابع مشابه
Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملMulti-robot map alignment in visual SLAM
This paper focusses on the study of the Map Alignment problem in a multirobot SLAM context. Given a team of robots, we consider the situation in which each robot is building its own local map independently. These maps are landmark-based and three-dimensional. The local maps built by the different robots will have different reference systems. At some point, it may be interesting to express all m...
متن کاملLocal and Global Descriptors for Place Recognition in Robotics
The simultaneous autolocalization and mapping of the environment is one of the most pressing problems of robotics. Among the existing SLAM algorithms, place recognition is a must for several cases. As an example, in multirobot SLAM we have several individual maps created by various robots. In order to combine them into one global map we have to identify common places before merging them. In thi...
متن کاملNew Adaptive UKF Algorithm to Improve the Accuracy of SLAM
SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...
متن کاملMultirobot C-SLAM: Simultaneous Localization, Control and Mapping
This paper is about closing the low level control loop during Multirobot Simultaneous Localization and Map Building from an estimation-control theoretic viewpoint. We present a multi-vehicle control strategy that uses the state estimates generated from the SLAM algorithm as input to a multi-vehicle controller. Given the separability between optimal state estimation and regulation, we show that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013