Vocal Tract Articulation in Zebra Finches
نویسندگان
چکیده
BACKGROUND Birdsong and human vocal communication are both complex behaviours which show striking similarities mainly thought to be present in the area of development and learning. Recent studies, however, suggest that there are also parallels in vocal production mechanisms. While it has been long thought that vocal tract filtering, as it occurs in human speech, only plays a minor role in birdsong there is an increasing number of studies indicating the presence of sound filtering mechanisms in bird vocalizations as well. METHODOLOGY/PRINCIPAL FINDINGS Correlating high-speed X-ray cinematographic imaging of singing zebra finches (Taeniopygia guttata) to song structures we identified beak gape and the expansion of the oropharyngeal-esophageal cavity (OEC) as potential articulators. We subsequently manipulated both structures in an experiment in which we played sound through the vocal tract of dead birds. Comparing acoustic input with acoustic output showed that OEC expansion causes an energy shift towards lower frequencies and an amplitude increase whereas a wide beak gape emphasizes frequencies around 5 kilohertz and above. CONCLUSION These findings confirm that birds can modulate their song by using vocal tract filtering and demonstrate how OEC and beak gape contribute to this modulation.
منابع مشابه
Two neural streams, one voice: pathways for theme and variation in the songbird brain.
Birdsong offers a unique model system to understand how a developing brain - once given a set of purely acoustic targets - teaches itself the vocal-tract gestures necessary to imitate those sounds. Like human infants, to juvenile male zebra finches (Taeniopygia guttata) falls the burden of initiating the vocal-motor learning of adult sounds. In both species, adult caregivers provide only a set ...
متن کاملJuvenile zebra finches can use multiple strategies to learn the same song.
Does the ontogeny of vocal imitation follow a set program that, given a target sound, unfolds in a predictable manner, or is it more like problem solving, with many possible solutions? We report that juvenile male zebra finches, Taeniopygia guttata, can master their imitation of the same song in various ways; these developmental trajectories are sensitive to the social setting in which the bird...
متن کاملFoxP2 isoforms delineate spatiotemporal transcriptional networks for vocal learning in the zebra finch
Human speech is one of the few examples of vocal learning among mammals yet ~half of avian species exhibit this ability. Its neurogenetic basis is largely unknown beyond a shared requirement for FoxP2 in both humans and zebra finches. We manipulated FoxP2 isoforms in Area X, a song-specific region of the avian striatopallidum analogous to human anterior striatum, during a critical period for so...
متن کاملTitle: Song Decrystallization in Adult Zebra Finches Does Not Require the Song Nucleus 1
35 In adult male zebra finches, transecting the vocal nerve causes previously stable (i.e., 36 crystallized) song to slowly degrade, presumably because of the resulting distortion in 37 auditory feedback. How and where distorted feedback interacts with song motor 38 networks to induce this process of song decrystallization remains unknown. The song 39 premotor nucleus HVC is a potential site wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010