Synchrotron-based imaging and tomography with hard X-rays
نویسندگان
چکیده
Hard X-ray imaging with synchrotron radiation is a powerful tool to study opaque materials on the microand nano-lengthscales. Different imaging methods are available with an instrument recently built at Sector 34 of the Advanced Photon Source. In-line phase contrast imaging is performed with micrometer resolution. Increased spatial resolution is achieved using cone-beam geometry. The almost parallel beam is focused with a Kirkpatrick–Baez mirror system. The focal spot serves as a diverging secondary source. An X-ray magnified image of the sample is projected on the detector. For imaging and tomography with sub-100 nm resolution, an X-ray full-field microscope has been built. It uses a Kirkpatrick–Baez mirror (KB) as a condenser optic, followed by a micro-Fresnel zone plate (FZP) as an objective lens. The zone plates presently provide 50–85 nm spatial resolution when operating the microscope with photon energy between 6 and 12 keV. Tomography experiments have been performed with this new device. 2007 Published by Elsevier B.V. PACS: 07.85. Tt; 41.50.+h; 41.60; 42.15.Eq; 42.25.Gy; 42.25.Kb; 42.30; 87.59
منابع مشابه
A Review of the Applications of Synchrotron Radiation in Archaeological Sciences
The scientific research regarding investigation, characterization and protection of the archeological specimens is manifested through a notable participation of multidisciplinary subjects and experts, scientists and archeometrists. One of the main principals which are considered by archaeometrists in the study of the precious specimens is the utilizing nondestructive methods. As an example, in ...
متن کاملValidation of computed tomography-based attenuation correction of deviation between theoretical and actual values for four computed tomography scanners
Objective: In this study, we aimed to validate the accuracy of computed tomography-based attenuation correction (CTAC) using the bilinear scaling method.Methods: The measured attenuation coefficient (μm) was compared to a theoretical attenuation coefficient (μt ) using four different CT scanners and an RMI 467 phantom. The effective energy of the CT beam X-rays was calculated, using the aluminu...
متن کاملNew aspects of coherent hard X-ray imaging
Hard X-ray radiography and tomography are common techniques for medical and industrial imaging. They normally rely on absorption contrast. However, the refractive index for X-rays is slightly different from unity and an X-ray beam is modulated in its optical phase after passing through a sample. The coherence of third generation synchrotron radiation beams makes a simple form of phase-contrast ...
متن کاملLaser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone
A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The us...
متن کاملHard X-ray phase-contrast imaging with the Compact Light Source based on inverse Compton X-rays.
The first imaging results obtained from a small-size synchrotron are reported. The newly developed Compact Light Source produces inverse Compton X-rays at the intersection point of the counter propagating laser and electron beam. The small size of the intersection point gives a highly coherent cone beam with a few milliradian angular divergence and a few percent energy spread. These specificati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007