Multicolor Fluorescence Detection-Based Microfluidic Device for Single-Cell Metabolomics: Simultaneous Quantitation of Multiple Small Molecules in Primary Liver Cells.

نویسندگان

  • Qingling Li
  • Peilin Chen
  • Yuanyuan Fan
  • Xu Wang
  • Kehua Xu
  • Lu Li
  • Bo Tang
چکیده

Single-cell metabolomics can be used to study cell diversity and how cells respond to environment. There is an urgent need to develop effective detection methods for single-cell metabolomics. Microchip electrophoresis with laser-induced fluorescence detection (MCE-LIFD) is a powerful tool to detect metabolites at the single-cell level. However, the existing one-laser excitation and one-color fluorescence collection in MCE-LIFD is not sufficient for the simultaneous detection of multiple small molecules with wide variations in their fluorescence excitation and emission spectra. In this manuscript, we describe a multicolor fluorescence detection-based microfluidic device (MFD-MD) for single-cell metabolomics research. We selected primary liver cells from acute ethanol-stimulated mice as the model cells and hydrogen peroxide (H2O2), glutathione (GSH), and cysteine (Cys) as representative small-molecule metabolites for single-cell analysis. The microfluidic chip enabled accurate single-cell manipulation and effective electrophoresis separation. The new multicolor fluorescence detection permitted simultaneous analysis of H2O2, GSH, and Cys. Ethanol exposure induced an increase in H2O2 and a decrease in GSH and Cys. Obvious cell heterogeneity was observed. These results provide insights regarding the intracellular oxidative/antioxidative molecular mechanism in response to external stimuli. The MFD-MD provides a new opportunity for simultaneous single-cell analysis of multiple metabolites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells

Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...

متن کامل

Multiplexed spectral signature detection for microfluidic color-coded bioparticle flow.

Here, we report a high-speed photospectral detection technique capable of discriminating subtle variations of spectral signature among fluorescently labeled cells and microspheres flowing in a microfluidic channel. The key component used in our study is a strain-tunable nanoimprinted grating microdevice coupled with a photomultiplier tube (PMT). The microdevice permits acquisition of the contin...

متن کامل

Multicolor Electron Microscopy for Simultaneous Visualization of Multiple Molecular Species.

Electron microscopy (EM) remains the primary method for imaging cellular and tissue ultrastructure, although simultaneous localization of multiple specific molecules continues to be a challenge for EM. We present a method for obtaining multicolor EM views of multiple subcellular components. The method uses sequential, localized deposition of different lanthanides by photosensitizers, small-mole...

متن کامل

A New Microfluidic Device for Classification of Microalgae Cells Based on Simultaneous Analysis of Chlorophyll Fluorescence, Side Light Scattering, Resistance Pulse Sensing

Fast on-site monitoring of foreign microalgae species carried by ship ballast water has drawn more and more attention. In this paper, we presented a new method and a compact device of classification of microalgae cells by simultaneous detection of three kinds of signals of single microalgae cells in a disposable microfluidic chip. The microfluidic classification device has advantages of fast de...

متن کامل

Miniaturized, multiplexed readout of droplet-based microfluidic assays using time-domain modulation.

Recent advances in microfluidics to generate and control picoliter emulsions of water in oil have enabled ultra-sensitive assays for small molecules, proteins, nucleic acids, and cells. Unfortunately, the conventional fluorescence detection used to measure the outcome of these droplet-based assays has not proven suited to match the time and space multiplexing capabilities of microfluidic system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 88 17  شماره 

صفحات  -

تاریخ انتشار 2016