Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction.

نویسندگان

  • D E Sterner
  • P A Grant
  • S M Roberts
  • L J Duggan
  • R Belotserkovskaya
  • L A Pacella
  • F Winston
  • J L Workman
  • S L Berger
چکیده

SAGA, a recently described protein complex in Saccharomyces cerevisiae, is important for transcription in vivo and possesses histone acetylation function. Here we report both biochemical and genetic analyses of members of three classes of transcription regulatory factors contained within the SAGA complex. We demonstrate a correlation between the phenotypic severity of SAGA mutants and SAGA structural integrity. Specifically, null mutations in the Gcn5/Ada2/Ada3 or Spt3/Spt8 classes cause moderate phenotypes and subtle structural alterations, while mutations in a third subgroup, Spt7/Spt20, as well as Ada1, disrupt the complex and cause severe phenotypes. Interestingly, double mutants (gcn5Delta spt3Delta and gcn5Delta spt8Delta) causing loss of a member of each of the moderate classes have severe phenotypes, similar to spt7Delta, spt20Delta, or ada1Delta mutants. In addition, we have investigated biochemical functions suggested by the moderate phenotypic classes and find that first, normal nucleosomal acetylation by SAGA requires a specific domain of Gcn5, termed the bromodomain. Deletion of this domain also causes specific transcriptional defects at the HIS3 promoter in vivo. Second, SAGA interacts with TBP, the TATA-binding protein, and this interaction requires Spt8 in vitro. Overall, our data demonstrate that SAGA harbors multiple, distinct transcription-related functions, including direct TBP interaction and nucleosomal histone acetylation. Loss of either of these causes slight impairment in vivo, but loss of both is highly detrimental to growth and transcription.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Subset of TAFIIs Are Integral Components of the SAGA Complex Required for Nucleosome Acetylation and Transcriptional Stimulation

A number of transcriptional coactivator proteins have been identified as histone acetyltransferase (HAT) proteins, providing a direct molecular basis for the coupling of histone acetylation and transcriptional activation. The yeast Spt-Ada-Gcn5-acetyltransferase (SAGA) complex requires the coactivator protein Gcn5 for HAT activity. Identification of protein subunits by mass spectrometry and imm...

متن کامل

Inferring natural selection on fine-scale chromatin organization in yeast.

Despite its potential role in the evolution of complex phenotypes, the detection of negative (purifying) and positive selection on noncoding regulatory sequence has been elusive because of the inherent difficulty in predicting the functional consequences of mutations on noncoding sequence. Because the functioning of regulatory sequence depends upon both chromatin configuration and cis-regulator...

متن کامل

Ordered Recruitment of Chromatin Modifying and General Transcription Factors to the IFN-β Promoter

are multi-subunit assemblies of eight or more polypep-tides in which the DNA-dependent ATPase is either the BRG1 or the BRM1 proteins. Chromatin remodeling complexes function by facilitating an exchange between a normal and an altered, more accessible, nucleosome By contrast to the remodeling complexes, acetylation complexes covalently modify the amino terminal tails of nucleosomal histones (St...

متن کامل

Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex.

The transcriptional adaptor protein Gcn5 has been identified as a nuclear histone acetyltransferase (HAT). Although recombinant yeast Gcn5 efficiently acetylates free histones, it fails to acetylate histones contained in nucleosomes, indicating that additional components are required for acetylation of chromosomal histones. We report here that Gcn5 functions as a catalytic subunit in two high-m...

متن کامل

Cross-talk between histone H3 tails produces cooperative nucleosome acetylation.

Acetylation of histone proteins by the yeast Spt-Ada-Gcn5-acetyltansferase (SAGA) complex has served as a paradigm for understanding how posttranslational modifications of chromatin regulate eukaryotic gene expression. Nonetheless, it has been unclear to what extent the structural complexity of the chromatin substrate modulates SAGA activity. By using chromatin model systems, we have found that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 1999