Vesicular Transport Regulates Monoamine Storage and Release but Is Not Essential for Amphetamine Action

نویسندگان

  • Edward A. Fon
  • Emmanuel N. Pothos
  • Bao-Cun Sun
  • Nigel Killeen
  • David Sulzer
  • Robert H. Edwards
چکیده

To assess the role of exocytotic release in signaling by monoamines, we have disrupted the neuronal vesicular monoamine transporter 2 (VMAT2) gene. VMAT2-/- mice move little, feed poorly, and die within a few days after birth. Monoamine cell groups and their projections are indistinguishable from those of wild-type littermates, but the brains of mutant mice show a drastic reduction in monoamines. Using midbrain cultures from the mutant animals, amphetamine but not depolarization induces dopamine release. In vivo, amphetamine increases movement, promotes feeding, and prolongs the survival of VMAT2-/- animals, indicating that precise, temporally regulated exocytotic release of monoamine is not required for certain complex behaviors. In addition, the brains of VMAT2 heterozygotes contain substantially lower monoamine levels than those of wild-type littermates, and depolarization induces less dopamine release from heterozygous than from wild-type cultures, suggesting that VMAT2 expression regulates monoamine storage and release.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knockout of the Vesicular Monoamine Transporter 2 Gene Results in Neonatal Death and Supersensitivity to Cocaine and Amphetamine

Vesicular monoamine transporters are known to transport monoamines from the cytoplasm into secretory vesicles. We have used homologous recombination to generate mutant mice lacking the vesicular monoamine transporter 2 (VMAT2), the predominant form expressed in the brain. Newborn homozygotes die within a few days after birth, manifesting severely impaired monoamine storage and vesicular release...

متن کامل

Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter.

A second isoform of the human vesicular monoamine transporter (hVMAT) has been cloned from a pheochromocytoma cDNA library. The contribution of the two transporter isoforms to monoamine storage in human neuroendocrine tissues was examined with isoform-specific polyclonal antibodies against hVMAT1 and hVMAT2. Central, peripheral, and enteric neurons express only VMAT2. VMAT1 is expressed exclusi...

متن کامل

Differential quantal release of histamine and 5-hydroxytryptamine from mast cells of vesicular monoamine transporter 2 knockout mice.

The recent availability of mice lacking the neuronal form of the vesicular monoamine transporter 2 (VMAT2) affords the opportunity to study its roles in storage and release. Carbon fiber microelectrodes were used to measure individual secretory events of histamine and 5-hydroxytryptamine (5-HT) from VMAT2-expressing mast cells as a model system for quantal release. VMAT2 is indispensable for mo...

متن کامل

The mechanism of the releasing action of amphetamine . Uptake , superfusion , and electrophysiological studies on transporter - transfected cells

Amphetamine analogues are able to induce signs of neurotoxicity in the brain. In order to understand this type of neurotoxicity, the interaction of amphetamine with its molecular targets must be elucidated. These molecular targets are plasmalemmal and vesicular monoamine transporters. We investigated the interaction of amphetamine with these transporters in cells transfected with the respective...

متن کامل

Action potentials and amphetamine release antipsychotic drug from dopamine neuron synaptic VMAT vesicles.

Based on lysotracker red imaging in cultured hippocampal neurons, antipsychotic drugs (APDs) were proposed to accumulate in synaptic vesicles by acidic trapping and to be released in response to action potentials. Because many APDs are dopamine (DA) D2 receptor (D2R) antagonists, such a mechanism would be particularly interesting if it operated in midbrain DA neurons. Here, the APD cyamemazine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 19  شماره 

صفحات  -

تاریخ انتشار 1997