Experimental Comparison of CP-Logic Theory Inference Methods
نویسندگان
چکیده
In many applications, the goal is to model the probability distribution of a set of random variables that are related by a causal process, that is, the variables interact through a sequence of nondeterministic or probabilistic events. Causal Probabilistic Logic (CP-logic) (Vennekens et al., 2006) is a probabilistic logic modeling language that can model such processes. The model takes the form of a CP-logic theory (CP-theory), which is a set of events in which each event is represented as a rule of the following form (for simplicity, we consider propositional CP-theories):
منابع مشابه
CP-Logic Theory Inference with Contextual Variable Elimination and Comparison to BDD Based Inference Methods
There is a growing interest in languages that combine probabilistic models with logic to represent complex domains involving uncertainty. Causal probabilistic logic (CP-logic), which has been designed to model causal processes, is such a probabilistic logic language. This paper investigates inference algorithms for CP-logic; these are crucial for developing learning algorithms. It proposes a ne...
متن کاملLearning Ground CP-Logic Theories by Leveraging Bayesian Network Learning Techniques
Causal relations are present in many application domains. Causal Probabilistic Logic (CP-logic) is a probabilistic modeling language that is especially designed to express such relations. This paper investigates the learning of CP-logic theories (CP-theories) from training data. Its first contribution is SEM-CP-logic, an algorithm that learns CP-theories by leveraging Bayesian network (BN) lear...
متن کاملROBUSTNESS OF THE TRIPLE IMPLICATION INFERENCE METHOD BASED ON THE WEIGHTED LOGIC METRIC
This paper focuses on the robustness problem of full implication triple implication inference method for fuzzy reasoning. First of all, based on strong regular implication, the weighted logic metric for measuring distance between two fuzzy sets is proposed. Besides, under this metric, some robustness results of the triple implication method are obtained, which demonstrates that the triple impli...
متن کاملA Comparison of Mamdani and Sugeno Fuzzy Inference Systems for Traffic Flow Prediction
Information on the future state of traffic flow provides a solid foundation for the efficient implementation of traffic control and guidance. The prediction approaches based on fuzzy logic theory is of great interests, because the rule-based inference is similar to the way humans process casual relations and fuzzy linguistic variables provide a natural way to deal with uncertainties. This paper...
متن کاملAdaptive neuro-fuzzy inference system (ANFIS) applied for spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid
The UV-spectrophotometric method of analysis was proposed for simultaneous determination of fluoxetine (FLX) and sertraline (SRT). Considering the strong spectral overlap between UV-Vis spectra of these compounds, a previous separation should be carried out in order to determine them by conventional spectrophotometric techniques. Here, full-spectrum multivariate calibrations adaptive neuro-fuzz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009