Implementing Communication-optimal Parallel and Sequential Qr Factorizations
نویسندگان
چکیده
We present parallel and sequential dense QR factorization algorithms for tall and skinny matrices and general rectangular matrices that both minimize communication, and are as stable as Householder QR. The sequential and parallel algorithms for tall and skinny matrices lead to significant speedups in practice over some of the existing algorithms, including LAPACK and ScaLAPACK, for example up to 6.7x over ScaLAPACK. The parallel algorithm for general rectangular matrices is estimated to show significant speedups over ScaLAPACK, up to 22x over ScaLAPACK.
منابع مشابه
Communication-optimal Parallel and Sequential QR and LU Factorizations
We present parallel and sequential dense QR factorization algorithms that are both optimal (up to polylogarithmic factors) in the amount of communication they perform and just as stable as Householder QR. We prove optimality by deriving new lower bounds for the number of multiplications done by “non-Strassen-like” QR, and using these in known communication lower bounds that are proportional to ...
متن کاملCommunication-optimal parallel and sequential QR and LU factorizations: theory and practice
We present parallel and sequential dense QR factorization algorithms that are both optimal (up to polylogarithmic factors) in the amount of communication they perform, and just as stable as Householder QR. Our first algorithm, Tall Skinny QR (TSQR), factors m × n matrices in a one-dimensional (1-D) block cyclic row layout, and is optimized for m n. Our second algorithm, CAQR (Communication-Avoi...
متن کاملCommunication-optimal Parallel and Sequential Cholesky Decomposition
Numerical algorithms have two kinds of costs: arithmetic and communication, by which we mean either moving data between levels of a memory hierarchy (in the sequential case) or over a network connecting processors (in the parallel case). Communication costs often dominate arithmetic costs, so it is of interest to design algorithms minimizing communication. In this paper we first extend known lo...
متن کاملCommunication-avoiding parallel and sequential QR factorizations
We present parallel and sequential dense QR factorization algorithms that are optimized to avoid communication. Some of these are novel, and some extend earlier work. Communication includes both messages between processors (in the parallel case), and data movement between slow and fast memory (in either the sequential or parallel cases). Our first algorithm, Tall Skinny QR (TSQR), factors m× n ...
متن کاملCommunication Avoiding Rank Revealing QR Factorization with Column Pivoting
In this paper we introduce CARRQR, a communication avoiding rank revealing QRfactorization with tournament pivoting. We show that CARRQR reveals the numerical rank of amatrix in an analogous way to QR factorization with column pivoting (QRCP). Although the upperbound of a quantity involved in the characterization of a rank revealing factorization is worse forCARRQR than for QRCP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008