A Combinatorial Reciprocity Theorem for Hyperplane Arrangements
نویسندگان
چکیده
Given a nonnegative integer m and a finite collection A of linear forms on Qd, the arrangement of affine hyperplanes in Qd defined by the equations α(x) = k for α ∈ A and integers k ∈ [−m,m] is denoted by Am. It is proved that the coefficients of the characteristic polynomial of Am are quasi-polynomials inm and that they satisfy a simple combinatorial reciprocity law.
منابع مشابه
The Catalan Threshold Arrangement
Hyperplane arrangements are very interesting combinatorial objects and many results can be found in the literature. For instance, several papers [1, 2, 6, 7] are concerned with the characteristic polynomials and the number of regions of a hyperplane arrangement. In his paper [9], Stanley reviewed various hyperplane arrangements raising interesting questions, one of which is related to the follo...
متن کاملDescent algebras, hyperplane arrangements, and shuffling cards. To appear
This note establishes a connection between Solomon’s descent algebras and the theory of hyperplane arrangements. It is shown that card-shuffling measures on Coxeter groups, originally defined in terms of descent algebras, have an elegant combinatorial description in terms of random walk on the chambers of hyperplane arrangements. As a corollary, a positivity conjecture of Fulman is proved.
متن کاملDescent Algebras, Hyperplane Arrangements, and Shuuing Cards
This note establishes a connection between Solomon's descent algebras and the theory of hyperplane arrangements. It is shown that card-shu ing measures on Coxeter groups, originally de ned in terms of descent algebras, have an elegant combinatorial description in terms of randomwalk on the chambers of hyperplane arrangements. As a corollary, a positivity conjecture of Fulman is proved. 2
متن کاملAlgebraic Combinatorics of Graph Spectra , Subspace Arrangements and Tutte Polynomials by Christos A . Athanasiadis
The present thesis consists of three independent parts. In the first part we employ an elementary counting method to study the eigenvalues of the adjacency matrices of some special families of graphs. The main example is provided by the directed graph D(G), constructed by Propp on the vertex set of oriented spanning rooted trees of a given directed graph G. We describe the eigenvalues of D(G) i...
متن کاملGrothendieck Classes and Chern Classes of Hyperplane Arrangements
We show that the characteristic polynomial of a hyperplane arrangement can be recovered from the class in the Grothendieck group of varieties of the complement of the arrangement. This gives a quick proof of a theorem of Orlik and Solomon relating the characteristic polynomial with the ranks of the cohomology of the complement of the arrangement. We also show that the characteristic polynomial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010