Robot Sensor Calibration via Neural Network and Particle Swarm Optimization Enhanced with Crossover and Mutation
نویسندگان
چکیده
Original scientific paper In order to determine the position and orientation of an object in the wrist frame for robot, transform relation of hand-eye system should be estimated, which is described as rotational matrix and translational vector. A new approach integrating neural network and particle swarm optimization algorithm with crossover and mutation operation for robot sense calibration is proposed. First the neural network with rotational weight matrix is structured, where the weights are the elements of rotational part of homogeneous transform of the hand-eye system. Then the particle swarm optimization algorithm is integrated into the solving program, where the inertia weight factor and mutation probability are tuned self-adaptively according to the motion trajectory of particles in longitudinal direction and lateral direction. When the termination criterion is satisfied, the rotational matrix is obtained from the neural network’s stable weights. Then the translational vector is solved, so the position and orientation of camera frame with respect to wrist frame is achieved. The proposed approach provides a new scheme for robot sense calibration with self-adaptive technique, which guarantees the orthogonality of solved rotational components of the homogeneous transform.
منابع مشابه
Multi-Objective Optimization of Solar Thermal Energy Storage Using Hybrid of Particle Swarm Optimization and Multiple Crossover and Mutation Operator
Increasing of net energy storage (Q net) and discharge time of phase change material (t PCM), simultaneously, are important purpose in the design of solar systems. In the present paper, Multi-Objective (MO) based on hybrid of Particle Swarm Optimization (PSO) and multiple crossover and mutation operator is used for Pareto based optimization of solar systems. The conflicting objectives are Q net...
متن کاملNeuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کاملTeleoperation of a humanoid robot using full-body motion capture, example movements, and machine learning
In this paper we present and evaluate a novel method for teleoperating a humanoid robot via a full-body motion capture suit. Our method does not use any a priori analytical or mathematical modeling (e.g. forward or inverse kinematics) of the robot, and thus this approach could be applied to the calibration of any human-robot pairing, regardless of differences in physical embodiment. Our approac...
متن کاملModeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)
In present study, a three-step multi-objective optimization algorithm of cyclone separators is catered for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Dp and h as the re...
متن کاملComparative Analysis of Neural Network Training Methods in Real-time Radiotherapy
Background: The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients.Objective: This study evaluates the accuracy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014