Genetic Algorithms for Automated Texture Classification
نویسندگان
چکیده
In this paper we demonstrate that a genetic algorithm can be used to produce collections of pixel locations termed foot patterns useful for distinguishing between different types of texture images. The genetic algorithm minimizes the entropy of empirical samples taken with a particular foot pattern on a training image. The resulting low entropy foot patterns for several texture types are then used to classify test images. In order to classify a given image, foot patterns for several texture types are applied to the image to obtain entropy scores. The lowest entropy foot patterns are then used in a vote with the majority among the ten lowest scoring being taken as the classification. On the original test set of sixty images, twelve each from five image types, the resulting classification was 98.3% accurate (one image was not classified). When a sixth texture type, picked specifically to confound the classification technique, was added to texture types in the original test the technique misclassified several images of the two similar types. This latter experiment helps explain much of the how and why of the texture classification technique. We discuss potential methods for overcoming limitations of the texture classification technique.
منابع مشابه
Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملSecond-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملAutomated differentiation of benign and malignant liver tumors by Ultrasound Images
Background & Aims: Early detection and reliable differentiation of benign and malignant liver tumors could lead to improved cure rate and costs. Ultrasound image (US) is a convenient medical imaging method for interpreting liver tumors. Visual inspection of ultrasound images sometimes is combined with error and needs biopsy to confirm whether a tumor would be benign or malignant. The aim of thi...
متن کاملAutomated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملGenetic Algorithms for Automised Feature Selection in a Texture Classification System
This paper describes the usage of geoetic algorithms as feature selectors in a texture classification system. This is part of a system developed within a research project concerning the classification of genuine texture. An attempt is made to underline why an automised feature selector is a useful part of the texture classification system. Furthermore the way of including the genetic algorithms...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997