Cross-Language Learning for Program Classification using Bilateral Tree-Based Convolutional Neural Networks
نویسندگان
چکیده
Towards the vision of translating code that implements an algorithm from one programming language into another, this paper proposes an approach for automated program classification using bilateral tree-based convolutional neural networks (BiTBCNNs). It is layered on top of two tree-based convolutional neural networks (TBCNNs), each of which recognizes the algorithm of code written in an individual programming language. The combination layer of the networks recognizes the similarities and differences among code in different programming languages. The BiTBCNNs are trained using the source code in different languages but known to implement the same algorithms and/or functionalities. For a preliminary evaluation, we use 3591 Java and 3534 C++ code snippets from 6 algorithms we crawled systematically from GitHub. We obtained over 90% accuracy in the crosslanguage binary classification task to tell whether any given two code snippets implement a same algorithm. Also, for the algorithm classification task, i.e., to predict which one of the six algorithm labels is implemented by an arbitrary C++ code snippet, we achieved over 80% precision.
منابع مشابه
Cross-Language Learning for Program Classification using BTBCNNs
Towards the vision of automatically translating code that implements an algorithm from one programming language into another, this paper proposes an approach for automated program classifications using bilateral tree-based convolutional neural networks (BiTBCNNs). It is layered on top of two tree-based convolutional neural networks (TBCNNs), each of which recognizes the algorithm of code writte...
متن کاملA New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks
Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...
متن کاملProvide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery
Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...
متن کاملConvolutional Neural Networks over Tree Structures for Programming Language Processing
Deep neural networks have made significant breakthroughs in many fields of artificial intelligence. However, it has not been applied in the field of programming language processing. In this paper, we propose the treebased convolutional neural network (TBCNN) to model programming languages, which contain rich and explicit tree structural information. In our model, program vector representations ...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.06159 شماره
صفحات -
تاریخ انتشار 2017