Numerical study of stretched smectic-A elastomer sheets.

نویسندگان

  • A W Brown
  • J M Adams
چکیده

We present a numerical study of stretching monodomain smectic-A elastomer sheets, computed using the finite element method. When stretched parallel to their smectic layer normal the smectic layers are unstable to a transition to a buckled state. We model macroscopic deformations by replacing the microscopic energy with a coarse grained effective free energy that accounts for the fine-scale layer buckling. We augment this model with a term to describe the energy of deforming buckled layers, which is necessary to reproduce the experimentally observed Poisson ratios postbuckling. We examine the spatial distribution of the microstructure phases for various stretching angles relative to the layer normal and for different length-to-width aspect ratios. When stretching parallel to the layer normal the majority of the sample forms a bidirectionally buckled microstructure, except at the clamps where a unidirectionally buckled microstructure is predicted. When stretching at small inclinations to the layer normal the phase of the sample is sensitive to the aspect ratio of the sample, with the bidirectionally buckled phase persistent to large angles only for small aspect ratios. We relate these theoretical results to experiments on smectic-A elastomers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical response of smectic-C elastomers.

The elastic response of a smectic-C elastomer to three deformations, namely imposed lambda(xx), lambda(xz), and lambda(zz), has been modeled using a nonlinear theory of a nematic elastomer with embedded smectic layers, and with the director tilt (in the x direction) at a fixed angle with respect to the smectic layer normal (z direction). The main focus is the elastic response after any soft mod...

متن کامل

Modelling elasticity and memory effects in liquid crystalline elastomers by molecular dynamics simulations

We performed molecular dynamics simulations of a liquid crystal elastomer of side-chain architecture. The network is formed from a melt of 28 molecules each having a backbone of 100 hydrocarbon monomers, to which 50 side chains are attached in a syndiotactic way. Crosslinking is performed in the smectic A phase. We observe an increase of the smectic–isotropic phase transition temperature of abo...

متن کامل

Order, disorder and stretching of a smectic elastomer with ‘side-on’ mesogenic side groups

We report an X-ray study of the order in a ‘side-on’ smectic-A elastomer in which both the polymer backbone and the mesogenic side groups are, on average, parallel to the smectic layer normal. The present system shows in all phases locally correlated structures as evidenced by systematic diffuse scattering at small angles, attributed to the fluorinated end groups of the mesogens. The elastomer ...

متن کامل

Measurement of electrically induced shear strain in a chiral smectic liquid-crystal elastomer.

The mechanical response to electrical stimulation was investigated in a chiral smectic elastomer. The two-dimensional strain tensor in an elastomer film was precisely measured by tracking fluorescent beads dispersed on the film. Shear deformation in the film was clearly observed when an electric field was applied perpendicular to the film surface. The temperature dependence of the strain tensor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 88 1  شماره 

صفحات  -

تاریخ انتشار 2013