Red cell distortion and conceptual basis of diffusing capacity estimates: finite element analysis.

نویسندگان

  • C C Hsia
  • C J Chuong
  • R L Johnson
چکیده

To understand the effects of dynamic shape distortion of red blood cells (RBCs) as it develops under high-flow conditions on the standard physiological and morphometric methods of estimating pulmonary diffusing capacity, we computed the uptake of CO across a two-dimensional geometric capillary model containing a variable number of equally spaced RBCs. RBCs are circular or parachute shaped, with the same perimeter length. Total CO diffusing capacity (DLCO) and membrane diffusing capacity (DMCO) were calculated by a finite element method. DLCO calculated at two levels of alveolar PO2 were used to estimate DMCO by the Roughton-Forster (RF) technique. The same capillary model was subjected to morphometric analysis by the random linear intercept method to obtain morphometric estimates of DMCO. Results show that shape distortion of RBCs significantly reduces capillary diffusive gas uptake. Shape distortion exaggerates the conceptual errors inherent in the RF technique (J. Appl. Physiol. 79: 1039-1047, 1995); errors are exaggerated at a high capillary hematocrit. Shape distortion also introduces additional error in morphometric estimates of DMCO caused by a biased sampling distribution of random linear intercepts; errors are exaggerated at a low capillary hematocrit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Red cell distribution and the recruitment of pulmonary diffusing capacity

Hsia, Connie C. W., Robert L. Johnson, Jr., and Dipen Shah. Red cell distribution and the recruitment of pulmonary diffusing capacity. J. Appl. Physiol. 86(5): 1460–1467, 1999.—The distribution of red blood cells in alveolar capillaries is typically nonuniform, as shown by intravital microscopy and in alveolar tissue fixed in situ. To determine the effects of red cell distribution on pulmonary ...

متن کامل

Investigating the Effect of Joint Geometry of the Gas Tungsten Arc Welding Process on the Residual Stress and Distortion using the Finite Element Method

Although a few models have been proposed for 3D simulation of different welding processes, 2D models are still more effective in design goals, thus more popular due to the short-time analysis. In this research, replacing "time" by the "third dimension of place", the gas tungsten arc welding process was simulated by the finite element method in two dimensions and in a short time with acceptable ...

متن کامل

Invited editorial on "Red cell distribution and the recruitment of pulmonary diffusing capacity".

The distribution of red blood cells in alveolar capillaries is typically nonuniform, as shown by intravital microscopy and in alveolar tissue fixed in situ. To determine the effects of red cell distribution on pulmonary diffusive gas transport, we computed the uptake of CO across a two-dimensional geometric capillary model containing a variable number of red blood cells. Red blood cells are spa...

متن کامل

Finite Element Simulation of Welding Distortion in Large Structure

Fusion welding is widely used in heavy industries to join different parts together. But sometimes welding-induced distortions cause problems like misalignment during assembling and make costs to remove them. Thus it is imperative to predict and mitigate them to improve weldments quality and also reduce in fabrication costs. This study at first will introduce inherent deformation method for pred...

متن کامل

On morphometric measurement of oxygen diffusing capacity in middle ear gas exchange.

An accurate mathematical model of transmucosal gas exchange is prerequisite to understanding middle ear (ME) physiology. Current models require experimentally measured gas species time constants for all extant conditions as input parameters. However, studies on pulmonary gas exchange have shown that a morphometric model that incorporates more fundamental physiochemical and anatomic parameters a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 83 4  شماره 

صفحات  -

تاریخ انتشار 1997