New insights into the mechanism of oxodiperoxomolybdenum catalysed olefin epoxidation and the crystal structures of several oxo-peroxo molybdenum complexes.
نویسندگان
چکیده
[Mo(O)(O(2))(2)(L)(2)] compounds (L = pz, pyrazole; dmpz, 3,5-dimethylpyrazole) were reacted stoichiometrically, in the absence of an oxidant, with cis-cyclooctene in an ionic liquid medium where selective formation of the corresponding epoxide was observed. However, this oxo-transfer reaction was not observed for some other olefins, suggesting that alternative reaction pathways exist for these epoxidation processes. Subsequently, DFT studies investigating the oxodiperoxomolybdenum catalysed epoxidation model reaction for ethylene with hydrogen peroxide oxidant were performed. The well known Sharpless mechanism was first analysed for the [Mo(O)(O(2))(2)(dmpz)(2)] model catalyst and a low energy reaction pathway was found, which fits well with the observed experimental results for cis-cyclooctene. The structural parameters of the computed dioxoperoxo intermediate [Mo(O)(2)(O(2))(dmpz)(2)] in the Sharpless mechanism compare well with those found for the same moiety within the [Mo(4)O(16)(dmpz)(6)] complex, for which the full X-ray report is presented here. A second mechanism for the model epoxidation reaction was theoretically investigated in order to clarify why some olefins, which do not react stoichiometrically in the absence of an oxidant, showed low level conversions in catalytic conditions. A Thiel-type mechanism, in which the oxidant activation occurs prior to the oxo-transfer step, was considered. The olefin attack of the hydroperoxide ligand formed upon activation of hydrogen peroxide with the [Mo(O)(O(2))(2)(dmpz)(2)] model catalyst was not possible to model. The presence of two dmpz ligands coordinated to the molybdenum centre prevented the olefin attack for steric reasons. However, a low energy reaction pathway was identified for the [Mo(O)(O(2))(2)(dmpz)] catalyst, which can be formed from [Mo(O)(2)(O(2))(dmpz)(2)] by ligand dissociation. Both mechanisms, Sharpless- and Thiel-type, were found to display comparable energy barriers and both are accessible alternative pathways in the oxodiperoxomolybdenum catalysed olefin epoxidation. Additionally, the molecular structures of [Mo(O)(O(2))(2)(H(2)O)(pz)] and [Hdmpz](4)[Mo(8)O(22)(O(2))(4)(dmpz)(2)]·2H(2)O and the full X-ray report of [Mo(O)(O(2))(2)(pz)(2)] are also presented.
منابع مشابه
Olefin epoxidation by hydrogen peroxide catalysed by molybdenum complexes in ionic liquids and structural characterisation of the proposed intermediate dioxoperoxomolybdenum species.
The complex [Mo(4)O(16)(dmpz)(6)] (1) has been isolated as part of a study of oxodiperoxomolybdenum catalysed epoxidation of olefin substrates with hydrogen peroxide in ionic liquids. Notably, 1 is the first dioxoperoxomolybdenum species to be structurally characterised.
متن کاملMechanistic insights into β-oxygen atom transfer in olefin epoxidation mediated by W(VI) complexes and H2O2.
A DFT investigation of the olefin epoxidation mechanism catalysed by the [Cp*WO(OH)(2)](+) complex with H(2)O(2) reveals that the outer sphere transfer of the hydroperoxido O(β) atom to the olefin is considerably more favourable than that of the hydroperoxido O(α) atom. The reasons for this unusual pathway are discussed.
متن کاملPreparation and Characterization of Supported Molybdenum and Tungsten Schiff Base Complexes on MCM-41 as Nanocatalysts for the Epoxidation of Olefins
Two new heterogenized epoxidation nanocatalysts based on molybdenum and tungsten compounds were prepared withcovalent grafting of MCM-41 with 3-aminoropropyl trimethoxysilane and subsequent reaction with diphenylphosphinobenzaldehyde and complexation with M (Mo, W)O2(acac)2. X-ray diffraction and nitrogen sorption analyses revealed the preservation of the textural properti...
متن کاملActivation of molecular oxygen by a molybdenum complex for catalytic oxidation.
A sterically demanding molybdenum(VI) dioxo complex was found to catalytically activate molecular oxygen and to transfer its oxygen atoms to phosphines. Intermediate peroxo as well as reduced mono-oxo complexes were isolated and fully characterized. Monomeric Mo(IV) monooxo species proved to be of an unusual nature with the coordinated phosphine trans to the oxo group. The reduced molybdenum ce...
متن کاملExperimental and theoretical insights into the oxodiperoxomolybdenum-catalysed sulphide oxidation using hydrogen peroxide in ionic liquids.
The oxidation of organic sulphides with aqueous hydrogen peroxide in ionic liquids (ILs) catalysed by oxodiperoxomolybdenum complexes was investigated. The selective formation of several sulfones was achieved using the 1 : 3 ratio of sulphide : H2O2 in [C4mim][PF6] (C4mim = 1-butyl-3-methylimidazolium) in a reaction catalysed by the [Mo(O)(O2)2(H2O)n] complex. Conversely, sulfoxides were produc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Dalton transactions
دوره 41 23 شماره
صفحات -
تاریخ انتشار 2012