Mesoscale and macroscale kinetic energy fluxes from granular fabric evolution.
نویسندگان
چکیده
Recent advances in high-resolution measurements means it is now possible to identify and track the local "fabric" or contact topology of individual grains in a deforming sand throughout loading history. These provide compelling impetus to the development of methods for inferring changes in the contact forces and energies at multiple spatiotemporal scales, using information on grain contacts alone. Here we develop a surrogate measure of the fluctuating kinetic energy based on changes in the local contact topology of individual grains. We demonstrate the method for dense granular materials under quasistatic biaxial shear. In these systems, the initially stable and solidlike response eventually gives way to liquidlike behavior and global failure. This crossover in mechanical behavior, akin to a phase transition, is marked by bursts of kinetic energy and frictional dissipation. Mechanisms underlying this release of energy include the buckling of major load-bearing structures known as force chains. These columns of grains represent major repositories for stored strain energy. Stored energy initially accumulates at all of the contacts along the force chain, but is released collectively when the chain overloads and buckles. The exact quantification of the buildup and release of energy in force chains, and the manner in which force chain buckling propagates in the sample (i.e., diffuse and systemwide versus localized into shear bands), requires detailed knowledge of contact forces. To date, however, the forces at grain contacts continue to elude measurement in natural granular materials like sand. Here, using data from computer simulations, we show that a proxy for the fluctuating kinetic energy in dense granular materials can be suitably constructed solely from the evolving properties of the grain's local contact topology. Our approach directly relates the evolution of fabric to energy flux and makes possible research into the propagation of failure from measurements of grain contacts in real granular materials.
منابع مشابه
Validation of Martilli’s urban boundary layer scheme with measurements from two mid-latitude European cities
Martilli’s urban parameterization scheme is improved and implemented in a mesoscale model in order to take into account the typical effects of a real city on the air temperature near the ground and on the surface exchange fluxes. The mesoscale model is run on a single column using atmospheric data and radiation recorded above roof level as forcing. Here, the authors validate Martilli’s urban bo...
متن کاملMathematical Modeling of Flow in a Granular Permeable Bed Channel
In this research, a two-dimensional mathematical model using turbulence model was developed in a rectangular channel with granular permeable bed. Finite volume method was used for numerical solution of governing equations. The equations considered are discretized using Hybrid difference scheme while applying SIMPLE algorithm to correct velocity components in the continuity equation. In the dev...
متن کاملThe Troposphere-to-Stratosphere Transition in Kinetic Energy Spectra and Nonlinear Spectral Fluxes as Seen in ECMWF Analyses
Global horizontal wavenumber kinetic energy spectra and spectral fluxes of rotational kinetic energy and enstrophy are computed for a range of vertical levels using a T799 ECMWF operational analysis. Above 250 hPa, the kinetic energy spectra exhibit a distinct break between steep and shallow spectral ranges, reminiscent of dual power-law spectra seen in aircraft data and high-resolution general...
متن کاملClimatic and thermal comfort research orientations in outdoor spaces: From 1999 to 2017 in Iran
The level of satisfaction with an environment differs among individuals, which may be caused by social, psychological and physical factors. One of the environmental factors affecting physical and mental satisfaction, is the thermal condition of space. In recent years, the importance of thermal comfort has been accentuated due to the climate change and global warming, increasing the number of st...
متن کاملMacroscopic liquid-state molecular hydrodynamics
Experimental evidence and theoretical modeling suggest that piles of confined, high-restitution grains, subject to low-amplitude vibration, can serve as experimentally-accessible analogs for studying a range of liquid-state molecular hydrodynamic processes. Experiments expose single-grain and multiple-grain, collective dynamic features that mimic those either observed or predicted in molecular-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 89 3 شماره
صفحات -
تاریخ انتشار 2014