Performance Evaluation Metrics for Software Fault Prediction Studies

نویسنده

  • Cagatay Catal
چکیده

Experimental studies confirmed that only a small portion of software modules cause faults in software systems. Therefore, the majority of software modules are represented with non-faulty labels and the rest are marked with faulty labels during the modeling phase. These kinds of datasets are called imbalanced, and different performance metrics exist to evaluate the performance of proposed fault prediction techniques. In this study, we investigate 85 fault prediction papers based on their performance evaluation metrics and categorize these metrics into two main groups. Evaluation methods such as cross validation and stratified sampling are not in the scope of this paper, and therefore only evaluation metrics are examined. This study shows that researchers have used different evaluation parameters for software fault prediction until now and more studies on performance evaluation metrics for imbalanced datasets should be conducted.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Classifiers in Software Fault-Proneness Prediction

Reliability of software counts on its fault-prone modules. This means that the less software consists of fault-prone units the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of software, it will be possible to judge the software reliability. In predicting software fault-prone modules, one of the contributing features is software metric by which one ...

متن کامل

Using Source Code Metrics and Ensemble Methods for Fault Proneness Prediction

Software fault prediction model are employed to optimize testing resource allocation by identifying fault-prone classes before testing phases. Several researchers’ have validated the use of different classification techniques to develop predictive models for fault prediction. The performance of the statistical models are proven to be influenced by the training and testing dataset. Ensemble meth...

متن کامل

Software Fault Prediction: A Systematic Mapping Study

Context: Software fault prediction has been an important research topic in the software engineering field for more than 30 years. Software defect prediction models are commonly used to detect faulty software modules based on software metrics collected during the software development process. Objective: Data mining techniques and machine learning studies in the fault prediction software context ...

متن کامل

Important Issues in Software Fault Prediction : A Road Map

Quality assurance tasks such as testing, verification and validation, fault tolerance, and fault prediction play a major role in software engineering activities. Fault prediction approaches are used when a software company needs to deliver a finished product while it has limited time and budget for testing it. In such cases, identifying and testing parts of the system that are more defect prone...

متن کامل

Comparative Analysis of Software Network and CK Metrics: Implications for Pre- and Post-release Faults

The research on open source software has attracted a great deal of attention during the past decades for its wide applications in both academia and industry. Among the research topics related to open source software, the usefulness of software network metrics for fault prediction has been received much attention recently. In order to verify the importance of software network metrics in the perf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012