Covariation representations for Hermitian Lévy process ensembles of free infinitely divisible distributions

نویسندگان

  • J. Armando Domínguez-Molina
  • Víctor Pérez-Abreu
  • Alfonso Rocha-Arteaga
چکیده

It is known that the so-called Bercovici-Pata bijection can be explained in terms of certain Hermitian random matrix ensembles (Md)d≥1 whose asymptotic spectral distributions are free infinitely divisible. We investigate Hermitian Lévy processes with jumps of rank one associated to these random matrix ensembles introduced in [6] and [10]. A sample path approximation by covariation processes for these matrix Lévy processes is obtained. As a general result we prove that any d× d complex matrix subordinator with jumps of rank one is the quadratic variation of an C-valued Lévy process. In particular, we have the corresponding result for matrix subordinators with jumps of rank one associated to the random matrix ensembles (Md)d≥1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brief tutorial of Lévy processes

Some fundamental properties related to Lévy processes are discussed. Topics include infinitely divisible distributions, Lévy-Khintchine formula, Poisson random measures, Lévy-Itô decomposition, series representations, and density transformations. 1 Basic properties • In short, a Lévy process X = {Xt}t≥1 is a R-valued process with independent and stationary increments whose paths are right-conti...

متن کامل

Classical and free infinitely divisible distributions and random matrices

We construct a random matrix model for the bijection Ψ between classical and free infinitely divisible distributions: for every d ≥ 1, we associate in a quite natural way to each ∗-infinitely divisible distribution μ a distribution Pμd on the space of d×d hermitian matrices such that Pμd ∗ Pνd = P μ∗ν d . The spectral distribution of a random matrix with distribution Pμd converges in probabilit...

متن کامل

Free Generalized Gamma Convolutions

The so-called Bercovici-Pata bijection maps the set of classical infinitely divisible laws to the set of free infinitely divisible laws. The purpose of this work is to study the free infinitely divisible laws corresponding to the classical Generalized Gamma Convolutions (GGC). Characterizations of their free cumulant transforms are derived as well as free integral representations with respect t...

متن کامل

Modeling of ‎I‎nfinite Divisible Distributions Using Invariant and Equivariant Functions

‎Basu’s theorem is one of the most elegant results of classical statistics‎. ‎Succinctly put‎, ‎the theorem says‎: ‎if T is a complete sufficient statistic for a family of probability measures‎, ‎and V is an ancillary statistic‎, ‎then T and V are independent‎. ‎A very novel application of Basu’s theorem appears recently in proving the infinite divisibility of certain statistics‎. ‎In addition ...

متن کامل

Lévy processes

We give a brief introduction to the class of stochastic processes known as Lévy processes, concentrating principally on their relation with infinitely divisible distributions and the Lévy-Itô decomposition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013