A Bijective Proof of Borchardt's Identity

نویسنده

  • Dan Singer
چکیده

We prove Borchardt’s identity det ( 1 xi − yj ) per ( 1 xi − yj ) = det ( 1 (xi − yj) ) by means of sign-reversing involutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transforming Inductive Proofs to Bijective Proofs

is not obvious as a relation among the integers, but has a natural bijective explanation. Namely, let Sk be the set of k-subsets of [n]. (Here, [n] denotes the set of positive integers less than or equal to n.) Then |Sk| = n! k!(n−k)! , so the left side of the identity is ∑n k=0 |Sk|. Since the sets Sk are disjoint, this is equal to | ⋃n k=0 Sk| = |P([n])| = 2 , which completes the proof. Of co...

متن کامل

Bijective Proofs of Vajda’s Ninetieth Fibonacci Number Identity and Related Identities

This article provides the first bijective proof for a previously “uncounted” Fibonacci number identity of Vajda. Bijections on similar sets that illustrate a related family of Fibonacci number identities are also considered.

متن کامل

A Combinatorial Proof of a Symmetric q-Pfaff-Saalschütz Identity

We give a bijective proof of a symmetric q-identity on 4φ3 series, which is a symmetric generalization of the famous q-Pfaff-Saalschütz identity. An elementary proof of this identity is also given.

متن کامل

Bijective proofs of Gould's and Rothe's identities

We first give a bijective proof of Gould’s identity in the model of binary words. Then we deduce Rothe’s identity from Gould’s identity again by a bijection, which also leads to a double-sum extension of the q-Chu-Vandermonde formula.

متن کامل

Generalized Cauchy identities, trees and multidimensional Brownian motions. Part I: bijective proof of generalized Cauchy identities

In this series of articles we study connections between combinatorics of multidimensional generalizations of Cauchy identity and continuous objects such as multidimensional Brownian motions and Brownian bridges. In Part I of the series we present a bijective proof of multidimensional generalizations of the Cauchy identity. Our bijection uses oriented planar trees equipped with some linear orders.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2004