Strategies of non-sequential protein structure alignments.
نویسندگان
چکیده
Due to the large number of available protein structure alignment algorithms, a lot of effort has been made to define robust measures to evaluate their performances and the quality of generated alignments. Most quality measures involve the number of aligned residues and the RMSD. In this work, we analyze how these two properties are influenced by different residue assignment strategies as employed in common non-sequential structure alignment algorithms. Therefore, we implemented different residue assignment strategies into our non-sequential structure alignment algorithm GANGSTA+. We compared the resulting numbers of aligned residues and RMSDs for each residue assignment strategy and different alignment algorithms on a benchmark set of circular-permuted protein pairs. Unfortunately, differences in the residue assignment strategies are often ignored when comparing the performances of different algorithms. However, our results clearly show that this may strongly bias the observations. Bringing residue assignment strategies in line can explain observed performance differences between entirely different alignment algorithms. Our results suggest that performance comparison of non-sequential protein structure alignment algorithms should be based on the same residue assignment strategy.
منابع مشابه
Fast and accurate non-sequential protein structure alignment using a new asymmetric linear sum assignment heuristic
MOTIVATION The three dimensional tertiary structure of a protein at near atomic level resolution provides insight alluding to its function and evolution. As protein structure decides its functionality, similarity in structure usually implies similarity in function. As such, structure alignment techniques are often useful in the classifications of protein function. Given the rapidly growing rate...
متن کاملResidue Contexts: Non-sequential Protein Structure Alignment Using Structural and Biochemical Features
The study of non-sequential alignments, with different connectivity of the aligned fragments in the proteins being compared can offer a more complete picture of the structural, evolutionary and functional relationship between two proteins, than what is possible purely with sequential alignments. The design of techniques for non-sequential protein structure alignment therefore, constitutes an im...
متن کاملSAS-Pro: Simultaneous Residue Assignment and Structure Superposition for Protein Structure Alignment
Protein structure alignment is the problem of determining an assignment between the amino-acid residues of two given proteins in a way that maximizes a measure of similarity between the two superimposed protein structures. By identifying geometric similarities, structure alignment algorithms provide critical insights into protein functional similarities. Existing structure alignment tools adopt...
متن کاملParallel Seed-Based Approach to Multiple Protein Structure Similarities Detection
Finding similarities between protein structures is a crucial task in molecular biology. Most of the existing tools require proteins to be aligned in order-preserving way and only find single alignments even when multiple similar regions exist. We propose a new seed-based approach that discovers multiple pairs of similar regions. Its computational complexity is polynomial and it comes with a qua...
متن کاملOPAAS: a web server for optimal, permuted, and other alternative alignments of protein structures
The large number of experimentally determined protein 3D structures is a rich resource for studying protein function and evolution, and protein structure comparison (PSC) is a key method for such studies. When comparing two protein structures, almost all currently available PSC servers report a single and sequential (i.e. topological) alignment, whereas the existence of good alternative alignme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome informatics. International Conference on Genome Informatics
دوره 22 شماره
صفحات -
تاریخ انتشار 2010