A Continuous Information Attribute Reduction Algorithm Based on Hierarchical Granulation
نویسندگان
چکیده
The attribute reduction algorithms based on neighborhood approximation usually use the distance as the approximate metric. Algorithms could result in the loss of information with the same distance threshold to construct the neighborhood families of different dimension spaces. Thereby, an attribute reduction algorithm based on hierarchical granulation is proposed. This algorithm can reduce redundant attributes in the same granularity. Experimental results with UCI data sets show that the algorithm can improve the classification power, and reduce the loss of information.
منابع مشابه
Attribute Granulation Based on Attribute Discernibility and AP Algorithm
For high dimensional data, the redundant attributes of samplers will not only increase the complexity of the calculation, but also affect the accuracy of final result. The existing attribute reduction methods are encountering bottleneck problem of timeliness and spatiality. In order to looking for a relatively coarse attributes granularity of problem solving, this paper proposes an efficient at...
متن کاملA Comparative Study of Multi-Attribute Continuous Double Auction Mechanisms
Auctions have been as a competitive method of buying and selling valuable or rare items for a long time. Single-sided auctions in which participants negotiate on a single attribute (e.g. price) are very popular. Double auctions and negotiation on multiple attributes create more advantages compared to single-sided and single-attribute auctions. Nonetheless, this adds the complexity of the auctio...
متن کاملAnonymizing classification data using rough set theory
Identity disclosure is one of the most serious privacy concerns in many data mining applications. A wellknown privacy model for protecting identity disclosure is k-anonymity. The main goal of anonymizing classification data is to protect individual privacy while maintaining the utility of the data in building classification models. In this paper, we present an approach based on rough sets for m...
متن کاملDominance-based Matrix algorithm for Knowledge Reductions in Incomplete Fuzzy System
Abstract In this paper, definitions of knowledge granulation and rough entropy are proposed based on dominance relations in incomplete fuzzy system (fuzzy information system), and important properties are obtained. It can be found that using the definitions can measure uncertainty of an attribute set in the incomplete fuzzy information systems. A matrix algorithm for attributes reduction is acq...
متن کاملResearch on Granular Computing Approach in Rough Set
Granulation of information appears in many areas, such as machine learning, evidence theory, and data mining. Granular computing is the core research field in granulation of information. It is an effective tool for complex problem, massive data mining and fuzzy information processing. In the basis of principle of granularity, we aim to study the granular decomposing method in granules space bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013