Diversity of translation start sites may define increased complexity of the human short ORFeome.

نویسندگان

  • Masaaki Oyama
  • Hiroko Kozuka-Hata
  • Yutaka Suzuki
  • Kentaro Semba
  • Tadashi Yamamoto
  • Sumio Sugano
چکیده

Our previous proteomics analysis of small proteins expressed in human K562 cells provided the first direct evidence of translation of upstream ORFs in human full-length cDNAs (Oyama, M., Itagaki, C., Hata, H., Suzuki, Y., Izumi, T., Natsume, T., Isobe, T., and Sugano, S. (2004) Analysis of small human proteins reveals the translation of upstream open reading frames of mRNAs. Genome Res. 14, 2048-2052). In the present study, we performed an in-depth proteomics analysis of human K562 and HEK293 cells using a two-dimensional nano-liquid chromatography-tandem mass spectrometry system. The results led to the identification of eight protein-coding regions besides 197 small proteins with a theoretical mass less than 20 kDa that were already annotated coding sequences in the curated mRNA database. In addition to the upstream ORFs in the presumed 5'-untranslated regions of mRNAs, bioinformatics analysis based on accumulated 5'-end cDNA sequence data provided evidence of novel short coding regions that were likely to be translated from the upstream non-AUG start site or from the new short transcript variants generated by utilization of downstream alternative promoters. Protein expression analysis of the GRINL1A gene revealed that translation from the most upstream start site occurred on the minor alternative splicing transcript, whereas this initiation site was not utilized on the major mRNA, resulting in translation of the downstream ORF from the second initiation codon. These findings reveal a novel post-transcriptional system that can augment the human proteome via the alternative use of diverse translation start sites coupled with transcriptional regulation through alternative promoters or splicing, leading to increased complexity of short protein-coding regions defined by the human transcriptome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PreTIS: A Tool to Predict Non-canonical 5’ UTR Translational Initiation Sites in Human and Mouse

Translation of mRNA sequences into proteins typically starts at an AUG triplet. In rare cases, translation may also start at alternative non-AUG codons located in the annotated 5' UTR which leads to an increased regulatory complexity. Since ribosome profiling detects translational start sites at the nucleotide level, the properties of these start sites can then be used for the statistical evalu...

متن کامل

The Paradox of Intervening in Complex Adaptive Systems; Comment on “Using Complexity and Network Concepts to Inform Healthcare Knowledge Translation”

This commentary addresses two points raised by Kitson and colleagues’ article. First, increasing interest in applying the Complexity Theory lens in healthcare needs further systematic work to create some commonality between concepts used. Second, our need to adopt a better understanding of how these systems organise so we can change the systems overall behaviour, creates a paradox. We seek to m...

متن کامل

Bridging the ‘Two Cultures’ of Research and Service: Can Complexity Theory Help?; Comment on “Experience of Health Leadership in Partnering With University-Based Researchers in Canada – A Call to ‘Re-imagine’ Research”

This commentary addresses Bowen et al’s empirical study of perspectives of Canadian healthcare staff towards research and their call for multi-faceted action to improve misalignments in the system. This commentary argues that tensions and misalignments between research and service are inherent and can never be eradicated. Building on previous work by Lanham et al, I pro...

متن کامل

Genome-Wide Profiling of Alternative Translation Initiation Sites.

Regulation of translation initiation is a central control point in protein synthesis. Variations of start codon selection contribute to protein diversity and complexity. Systemic mapping of start codon positions and precise measurement of the corresponding initiation rate would transform our understanding of translational control. Here we describe a ribosome profiling approach that enables iden...

متن کامل

Alternative start and termination sites of transcription drive most transcript isoform differences across human tissues

Most human genes generate multiple transcript isoforms. The differential expression of these isoforms can help specify cell types. Diverse transcript isoforms arise from the use of alternative transcription start sites, polyadenylation sites and splice sites; however, the relative contribution of these processes to isoform diversity in normal human physiology is unclear. To address this questio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular & cellular proteomics : MCP

دوره 6 6  شماره 

صفحات  -

تاریخ انتشار 2007