Transductive Multi-view Embedding for Zero-Shot Recognition and Annotation
نویسندگان
چکیده
Most existing zero-shot learning approaches exploit transfer learning via an intermediate-level semantic representation such as visual attributes or semantic word vectors. Such a semantic representation is shared between an annotated auxiliary dataset and a target dataset with no annotation. A projection from a low-level feature space to the semantic space is learned from the auxiliary dataset and is applied without adaptation to the target dataset. In this paper we identify an inherent limitation with this approach. That is, due to having disjoint and potentially unrelated classes, the projection functions learned from the auxiliary dataset/domain are biased when applied directly to the target dataset/domain. We call this problem the projection domain shift problem and propose a novel framework, transductive multi-view embedding, to solve it. It is ‘transductive’ in that unlabelled target data points are explored for projection adaptation, and ‘multi-view’ in that both lowlevel feature (view) and multiple semantic representations (views) are embedded to rectify the projection shift. We demonstrate through extensive experiments that our framework (1) rectifies the projection shift between the auxiliary and target domains, (2) exploits the complementarity of multiple semantic representations, (3) achieves state-of-the-art recognition results on image and video benchmark datasets, and (4) enables novel cross-view annotation tasks.
منابع مشابه
Transductive Multi-label Zero-shot Learning
Zero-shot learning has received increasing interest as a means to alleviate the often prohibitive expense of annotating training data for large scale recognition problems. These methods have achieved great success via learning intermediate semantic representations in the form of attributes and more recently, semantic word vectors. However, they have thus far been constrained to the single-label...
متن کاملDeep Multiple Instance Learning for Zero-shot Image Tagging
In-line with the success of deep learning on traditional recognition problem, several end-to-end deep models for zero-shot recognition have been proposed in the literature. These models are successful to predict a single unseen label given an input image, but does not scale to cases where multiple unseen objects are present. In this paper, we model this problem within the framework of Multiple ...
متن کاملMulti-Label Zero-Shot Human Action Recognition via Joint Latent Embedding
Human action recognition refers to automatic recognizing human actions from a video clip, which is one of the most challenging tasks in computer vision. Due to the fact that annotating video data is laborious and timeconsuming, most of the existing works in human action recognition are limited to a number of small scale benchmark datasets where there are a small number of video clips associated...
متن کاملTransductive Multi-class and Multi-label Zero-shot Learning
Recently, zero-shot learning (ZSL) has received increasing interest. The key idea underpinning existing ZSL approaches is to exploit knowledge transfer via an intermediate-level semantic representation which is assumed to be shared between the auxiliary/source dataset and the target/test dataset and re-used as a bridge between the source and target domains for knowledge transfer. The semantic r...
متن کاملTransductive Unbiased Embedding for Zero-Shot Learning
Most existing Zero-Shot Learning (ZSL) methods have the strong bias problem, in which instances of unseen (target) classes tend to be categorized as one of the seen (source) classes. So they yield poor performance after being deployed in the generalized ZSL settings. In this paper, we propose a straightforward yet effective method named Quasi-Fully Supervised Learning (QFSL) to alleviate the bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014