A Selective Filter for Cytoplasmic Transport at the Axon Initial Segment
نویسندگان
چکیده
Distinct molecules are segregated into somatodendritic and axonal compartments of polarized neurons, but mechanisms underlying the development and maintenance of such segregation remain largely unclear. In cultured hippocampal neurons, we observed an ankyrin G- and F-actin-dependent structure that emerged in the cytoplasm of the axon initial segment (AIS) within 2 days after axon/dendrite differentiation, imposing a selective filter for diffusion of macromolecules and transport of vesicular carriers into the axon. Axonal entry was allowed for KIF5-driven carriers of synaptic vesicle protein VAMP2, but not for KIF17-driven carriers of dendrite-targeting NMDA receptor subunit NR2B. Comparisons of transport rates between chimeric forms of KIF17 and KIF5B, with the motor and cargo-binding domains switched, and between KIF5 loaded with VAMP2 versus GluR2 suggest that axonal entry of vesicular carriers depends on the transport efficacy of KIF-cargo complexes. This selective AIS filtering may contribute to preferential trafficking and segregation of cellular components in polarized neurons.
منابع مشابه
Selective microtubule-based transport of dendritic membrane proteins arises in concert with axon specification.
The polarized distribution of membrane proteins to axonal or somatodendritic neuronal compartments is fundamental to nearly every aspect of neuronal function. The polarity of dendritic proteins depends on selective microtubule-based transport; the vesicles that carry these proteins are transported into dendrites but do not enter the axon. We used live-cell imaging of fluorescently tagged dendri...
متن کاملDynein Regulator NDEL1 Controls Polarized Cargo Transport at the Axon Initial Segment
The development and homeostasis of neurons relies heavily on the selective targeting of vesicles into axon and dendrites. Microtubule-based motor proteins play an important role in polarized transport; however, the sorting mechanism to exclude dendritic cargo from the axon is unclear. We show that the dynein regulator NDEL1 controls somatodendritic cargo transport at the axon initial segment (A...
متن کاملNo Pasaran! Role of the axon initial segment in the regulation of protein transport and the maintenance of axonal identity.
The transmission of information in the brain depends on the highly polarized architecture of neurons. A number of cellular transport processes support this organization, including active targeting of proteins and passive corralling between compartments. The axon initial segment (AIS), which separates the somatodendritic and axonal compartments, has a key role in neuronal physiology, as both the...
متن کاملEFA6 regulates selective polarised transport and axon regeneration from the axon initial segment
Central nervous system (CNS) axons lose their intrinsic ability to regenerate upon maturity, whereas peripheral nervous system (PNS) axons do not. A key difference between these neuronal types is their ability to transport integrins into axons. Integrins can mediate PNS regeneration, but are excluded from adult CNS axons along with their Rab11 carriers. We reasoned that exclusion of the content...
متن کاملAn organelle gatekeeper function for Caenorhabditis elegans UNC-16 (JIP3) at the axon initial segment.
Neurons must cope with extreme membrane trafficking demands to produce axons with organelle compositions that differ dramatically from those of the cell soma and dendrites; however, the mechanism by which they accomplish this is not understood. Here we use electron microscopy and quantitative imaging of tagged organelles to show that Caenorhabditis elegans axons lacking UNC-16 (JIP3/Sunday Driv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 136 شماره
صفحات -
تاریخ انتشار 2009