Methodology and Performance Analysis of 3-D Facial Expression Recognition Using Statistical Shape Representation

نویسندگان

  • Wei Quan
  • Bogdan J. Matuszewski
  • Lik-Kwan Shark
  • Charlie Frowd
چکیده

This paper presents the methodology and performance of a statistical shape representation for automatic facial expression analysis in 3-D. The core of the method uses the statistical shape modelling technique with the deformable model-based surface matching process, which is capable of simulation and interpretation of 3-D human facial expressions. Using the proposed method, a 3-D face is represented by a low-dimensional shape space vector conveying information about face shape. Since the method relies only on the 3-D shape, it is inherently invariant to changes in the background, illumination, and viewing angle, which are the difficulties often suffered in 2-D facial expression analysis. Using 3-D static facial data from the BU-3DFE database as well as the 3-D dynamic facial expression database recently built by the authors in the ADSIP Research Centre, the paper also reports on the performance of the proposed facial expression representation. Furthermore, to demonstrate the effectiveness of the proposed facial expression representation, a comparison is made with human performance by involving a number of human participants to validate the facial expressions in the ADSIP database.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

3-D facial expression representation using statistical shape models

In the recent years, some research efforts have been made in facial expression representation and recognition for human-computer interaction (HCI) systems, video conferencing and augmented reality, biometrics and medical applications. Most of the current facial expression representation methods are 2-D image based. Inherently these methods have difficulty in handling large head pose variations,...

متن کامل

Improving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value

Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...

متن کامل

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011