Estimating the survival function based on the semi-Markov model for dependent censoring.
نویسندگان
چکیده
In this paper, we study a nonparametric maximum likelihood estimator (NPMLE) of the survival function based on a semi-Markov model under dependent censoring. We show that the NPMLE is asymptotically normal and achieves asymptotic nonparametric efficiency. We also provide a uniformly consistent estimator of the corresponding asymptotic covariance function based on an information operator. The finite-sample performance of the proposed NPMLE is examined with simulation studies, which show that the NPMLE has smaller mean squared error than the existing estimators and its corresponding pointwise confidence intervals have reasonable coverages. A real example is also presented.
منابع مشابه
Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring
In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...
متن کاملEstimating Marginal Survival Function by Adjusting for Dependent Censoring Using Many Covariates
One goal in survival analysis of right-censored data is to estimate the marginal survival function in the presence of dependent censoring. When many auxiliary covariates are sufficient to explain the dependent censoring, estimation based on either a semiparametric model or a nonparametric model of the conditional survival function can be problematic due to the high dimensionality of the auxilia...
متن کاملTemporal process regression B
We consider regression for response and covariates which are temporal processes observed over intervals. A functional generalised linear model is proposed which includes extensions of standard models in multi-state survival analysis. Simple nonparametric estimators of time-indexed parameters are developed using ‘working independence’ estimating equations and are shown to be uniformly consistent...
متن کاملAdjusting for Dependent Censoring Using Many Covariates
Right-censored data are common in many epidemiological studies. One main goal is to estimate the survival function of lifetime. However, if this right-censoring is dependent and is explained by high-dimensional covariates, estimating the survival function of lifetime by using either semiparametric models or nonparametric methods can be problematic. In this paper, we condense these high-dimensio...
متن کاملEstimation of the Survival Function for Negatively Dependent Random Variables
Let be a stationary sequence of pair wise negative quadrant dependent random variables with survival function {,1}nXn?F(x)=P[X>x]. The empirical survival function ()nFx based on 12,,...,nXXX is proposed as an estimator for ()nFx. Strong consistency and point wise as well as uniform of ()nFx are discussed
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lifetime data analysis
دوره 22 2 شماره
صفحات -
تاریخ انتشار 2016