Connectivity Oracles for Planar Graphs
نویسندگان
چکیده
We consider dynamic subgraph connectivity problems for planar undirected graphs. In this model there is a fixed underlying planar graph, where each edge and vertex is either “off” (failed) or “on” (recovered). We wish to answer connectivity queries with respect to the “on” subgraph. The model has two natural variants, one in which there are d edge/vertex failures that precede all connectivity queries, and one in which failures/recoveries and queries are intermixed. We present a d-failure connectivity oracle for planar graphs that processes any d edge/vertex failures in sort(d, n) time so that connectivity queries can be answered in pred(d, n) time. (Here sort and pred are the time for integer sorting and integer predecessor search over a subset of [n] of size d.) Our algorithm has two discrete parts. The first is an algorithm tailored to triconnected planar graphs. It makes use of Barnette’s theorem, which states that every triconnected planar graph contains a degree-3 spanning tree. The second part is a generic reduction from general (planar) graphs to triconnected (planar) graphs. Our algorithm is, moreover, provably optimal. An implication of Pǎtraşcu and Thorup’s lower bound on predecessor search is that no d-failure connectivity oracle (even on trees) can beat pred(d, n) query time. We extend our algorithms to the subgraph connectivity model where edge/vertex failures (but no recoveries) are intermixed with connectivity queries. In triconnected planar graphs each failure and query is handled in O(log n) time (amortized), whereas in general planar graphs both bounds become O(log n). ∗School of Electrical Engineering and Computer Science, Oregon State University, [email protected]. Supported by NSF CCF-0963921. †Supported by NSF CAREER grant no. CCF-0746673 and a grant from the US-Israel Binational Science Foundation. ‡Department of Mathematics and Computer Science, University of Southern Denmark, [email protected], http://imada.sdu.dk/ ̃cwn/. This research was partially supported by NSERC and MRI. ar X iv :1 20 4. 41 59 v2 [ cs .D S] 2 3 A pr 2 01 2
منابع مشابه
Approximate Distance Oracles for Planar Graphs with Improved Query Time-Space Tradeoff
We consider approximate distance oracles for edge-weighted n-vertex undirected planar graphs. Given fixed ǫ > 0, we present a (1 + ǫ)-approximate distance oracle with O(n(log logn)) space and O((log logn)) query time. This improves the previous best product of query time and space of the oracles of Thorup (FOCS 2001, J. ACM 2004) and Klein (SODA 2002) from O(n log n) to O(n(log log n)).
متن کاملMore Compact Oracles for Approximate Distances in Undirected Planar Graphs
Distance oracles are data structures that provide fast (possibly approximate) answers to shortest-path and distance queries in graphs. The tradeoff between the space requirements and the query time of distance oracles is of particular interest and the main focus of this paper. Unless stated otherwise, we assume all graphs to be planar and undirected. In FOCS 2001 (J. ACM 2004), Thorup introduce...
متن کاملMore Compact Oracles for Approximate Distances in Planar Graphs
Distance oracles are data structures that provide fast (possibly approximate) answers to shortestpath and distance queries in graphs. The tradeoff between the space requirements and the query time of distance oracles is of particular interest and the main focus of this paper. In FOCS‘01, Thorup introduced approximate distance oracles for planar graphs. He proved that, for any > 0 and for any pl...
متن کاملIncidence cuts and connectivity in fuzzy incidence graphs
Fuzzy incidence graphs can be used as models for nondeterministic interconnection networks having extra node-edgerelationships. For example, ramps in a highway system may be modeled as a fuzzy incidence graph so that unexpectedflow between cities and highways can be effectively studied and controlled. Like node and edge connectivity in graphs,node connectivity and arc connectivity in fuzzy inci...
متن کاملExact distance oracles for planar graphs
We present new and improved data structures that answer exact node-to-node distance queries in planar graphs. Such data structures are also known as distance oracles. For any directed planar graph on n nodes with non-negative lengths we obtain the following: • Given a desired space allocation S ∈ [n lg lgn, n], we show how to construct in Õ(S) time a data structure of size O(S) that answers dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012