Artificial Chemistries on GPU
نویسندگان
چکیده
An Artificial Chemistry is an abstract model of a chemistry that can be used to model real chemical and biological processes, as well as any natural or artificial phenomena involving interactions among objects and their transformations. It can also be used to perform computations inspired by chemistry, including heuristic optimization algorithms akin to evolutionary algorithms, among other usages. Artificial chemistries are conceptually parallel computations, and could greatly benefit from parallel computer architectures for their simulation, especially as GPU hardware becomes widespread and affordable. However, in practice it is difficult to parallelize artificial chemistry algorithms efficiently for GPUs, particularly in the case of stochastic simulation algorithms that model individual molecular collisions and take chemical kinetics into account. This chapter surveys the current state of the art in the techniques for parallelizing artificial chemistries on GPUs, with focus on their stochastic simulation and their applications in the evolutionary computation domain. Since this problem is far from being entirely solved to satisfaction, some suggestions for future research are also outlined. L. Yamamoto ( ) P. Collet ICUBE, University of Strasbourg, Illkirch, France e-mail: [email protected]; [email protected] W. Banzhaf Memorial University of Newfoundland, St. John’s, Canada e-mail: [email protected] S. Tsutsui and P. Collet (eds.), Massively Parallel Evolutionary Computation on GPGPUs, Natural Computing Series, DOI 10.1007/978-3-642-37959-8 18, © Springer-Verlag Berlin Heidelberg 2013 389 390 L. Yamamoto et al.
منابع مشابه
Evolving Reaction-Diffusion Systems on GPU
Reaction-diffusion systems contribute to various morphogenetic processes, and can also be used as computation models in real and artificial chemistries. Evolving reaction-diffusion solutions automatically is interesting because it is otherwise difficult to engineer them to achieve a target pattern or to perform a desired task. However most of the existing work focuses on the optimization of par...
متن کاملThe Creation of Novelty in Artificial Chemistries
We observe that the world surrounding us perpetually creates novelty. The question we examine in this article is whether it is possible to build computer models that are similarly creative. The discussion focuses specifically on artificial chemistries.
متن کاملIsolated Persian/Arabic handwriting characters: Derivative projection profile features, implemented on GPUs
For many years, researchers have studied high accuracy methods for recognizing the handwriting and achieved many significant improvements. However, an issue that has rarely been studied is the speed of these methods. Considering the computer hardware limitations, it is necessary for these methods to run in high speed. One of the methods to increase the processing speed is to use the computer pa...
متن کاملThoughts on an Unified Framework for Artificial Chemistries
Artificial Chemistries (ACs) are symbolic chemical metaphors for the exploration of Artificial Life, with specific focus on the problem of biogenesis or the origin of life. This paper presents authors thoughts towards defining a unified framework to characterize and classify symbolic artificial chemistries by devising appropriate formalism to capture semantic and organizational information. We ...
متن کاملDesign of a P System based Artificial Graph Chemistry
Artificial Chemistries (ACs) are symbolic chemical metaphors for the exploration of Artificial Life, with specific focus on the origin of life. In this work we define a P system based artificial graph chemistry to understand the principles leading to the evolution of life-like structures in an AC set up and to develop a unified framework to characterize and classify symbolic artificial chemistr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013