A 3-D four-wing attractor and its analysis
نویسندگان
چکیده
In this paper, several three dimensional (3-D) four-wing smooth quadratic autonomous chaotic systems are analyzed. It is shown that these systems have a number of similar features. A new 3-D continuous autonomous system is proposed based on these features. The new system can generate a four-wing chaotic attractor with less terms in the system equations. Several basic properties of the new system is analyzed by means of Lyapunov exponents, bifurcation diagrams and Poincare maps. Phase diagrams show that the equilibria are related to the existence of multiple wings.
منابع مشابه
A novel four-wing strange attractor born in bistability
Attractor merging can exist in chaotic systems with some kind of symmetry, which makes it possible to form a four-wing attractor from a bistable system. A relatively simple such case is described, which has robust chaos varying from a pair of coexisting symmetric single-wing attractors to a double-wing butterfly attractor, and finally to a four-wing attractor. Basic dynamical characteristics of...
متن کاملA novel four-wing strange attractor born in bistablity
Attractor merging can exist in chaotic systems with some kind of symmetry, which makes it possible to form a four-wing attractor from a bistable system. A relatively simple such case is described, which has robust chaos varying from a pair of coexisting symmetric single-wing attractors to a double-wing butterfly attractor, and finally to a four-wing attractor. Basic dynamical characteristics of...
متن کاملDesign of a Four-wing Heterogeneous Fractional-order Chaotic System and Its Circuit Simulation
Integer orders differential system is a special case of fractional-order differential system. Integer orders chaotic system that we usually study is ideally approximate to realistic chaotic system. Fractional-order chaotic system has broader and changeable values of order and more complex dynamical behavior than integer order chaotic system. Thus, fractional-order differential equation can desc...
متن کاملGlobal attractor for a nonlocal hyperbolic problem on ${mathcal{R}}^{N}$
We consider the quasilinear Kirchhoff's problem$$ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+f(u)=0 ,;; x in {mathcal{R}}^{N}, ;; t geq 0,$$with the initial conditions $ u(x,0) = u_0 (x)$ and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ; f(u)=|u|^{a}u$ and $(phi (x))^{-1} in L^{N/2}({mathcal{R}}^{N})cap L^{infty}({mathcal{R}}^{N} )$ is a positive function. The purpose of our work is to ...
متن کاملAttractor Based Analysis of Centrally Cracked Plate Subjected to Chaotic Excitation
The presence of part-through cracks with limited length is one of the prevalent defects in the plate structures. Due to the slight effect of this type of damages on the frequency response of the plates, conventional vibration-based damage assessment could be a challenging task. In this study for the first time, a recently developed state-space method which is based on the chaotic excitation is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009