Global and Localised A Posteriori Error Analysis in the maximum norm for finite element approx- imations of a convection-diffusion problem
نویسندگان
چکیده
We analyse nite element approximations of a stationary convection-diiusion problem. We prove global and localised a posteriori error estimates in the maximum norm. For the discretisation we use the Streamline Diiusion method.
منابع مشابه
A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملOn a Posteriori Error Estimates for One-dimensional Convection-diffusion Problems
This paper is concerned with the upwind finite-difference discretization of a quasilinear singularly perturbed boundary value problem without turning points. Kopteva’s a posteriori error estimate [N. Kopteva, Maximum norm a posteriori error estimates for a onedimensional convection-diffusion problem, SIAM J. Numer. Anal., 39, 423–441 (2001)] is generalized and improved. 2000 MSC: 65L10, 65L70.
متن کاملA posteriori error estimate for finite volume approximations of nonlinear heat equations
In this contribution we derive a posteriori error estimate for finite volume approximations of nonlinear convection diffusion equations in the L∞(L1)-norm. The problem is discretized implicitly in time by the method of characteristics, and in space by piecewise constant finite volume methods. The analysis is based on a reformulation for finite volume methods. The derived a posteriori error esti...
متن کاملA posteriori error estimation of residual type for anisotropic diffusion-convection-reaction problems
This paper presents an a posteriori residual error estimator for diffusion– convection–reaction problems with anisotropic diffusion, approximated by a SUPG finite element method on isotropic or anisotropic meshes in Rd, d = 2 or 3. The equivalence between the energy norm of the error and the residual error estimator is proved. Numerical tests confirm the theoretical results.
متن کاملA Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations
We establish residual a posteriori error estimates for lowest-order Raviart–Thomas mixed finite element discretizations of convection-diffusion-reaction equations on simplicial meshes in two or three space dimensions. The upwind-mixed scheme is considered as well, and the emphasis is put on the presence of an inhomogeneous and anisotropic diffusion-dispersion tensor and on a possible convection...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000