Muscular degeneration in the absence of dystrophin is a calcium-dependent process
نویسندگان
چکیده
Duchenne muscular dystrophy (DMD) is a progressive degenerative muscular disease that is due to mutations in the dystrophin gene. Neither the function of dystrophin nor the physiopathology of the disease have been clearly established yet. Several groups have reported elevated calcium concentrations in the mdx mouse model of DMD, but the effect of calcium levels on the progression of the disease continues to be a matter of debate. Here, we show that, in Caenorhabditis elegans, a gain-of-function mutation in the egl-19 calcium channel gene dramatically increases muscle degeneration in dystrophin mutants. Conversely, RNAi-mediated inhibition of egl-19 function reduces muscle degeneration by half. Therefore, our results demonstrate that calcium channel activity is a critical factor in the progression of dystrophin-dependent muscle degeneration.
منابع مشابه
Sarcoplasmic reticulum Ca permeation explored from the lumen side in mdx muscle fibers under voltage control
Duchenne muscular dystrophy is a very severe muscle disease that is characterized by progressive skeletal muscle wasting. Duchenne muscular dystrophy is provoked by mutations in the gene encoding the protein dystrophin, which lead to the total absence of this protein in skeletal muscles. In normal skeletal muscle, dystrophin is located underneath the sarcolemma, and interacts with the F-actin c...
متن کاملAbsence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy.
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numero...
متن کاملP164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...
متن کاملPathophysiology of duchenne muscular dystrophy: current hypotheses.
Duchenne muscular dystrophy is a devastating inherited neuromuscular disorder that affects one in 3300 live male births. Although the responsible gene and its product, dystrophin, have been characterized for more than 15 years, and a mouse model (mdx) has been developed, comprehensive understanding of the mechanism leading from the absence of dystrophin to the muscular degeneration is still deb...
متن کاملInositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle.
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder characterized by muscle wasting and premature death. The defective gene is dystrophin, a structural protein, absence of which causes membrane fragility and myofiber necrosis. Several lines of evidence showed that in adult DMD patients dystrophin is involved in signaling pathways that regulate calcium homeostasis and diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 11 شماره
صفحات -
تاریخ انتشار 2001