Inductive Logic Programming: From Logic of Discovery to Machine Learning

نویسندگان

  • Hiroki ARIMURA
  • Akihiro YAMAMOTO
چکیده

Inductive Logic Programming (ILP) is a study of machine learning systems that use clausal theories in first-order logic as a representation language. In this paper, we survey theoretical foundations of ILP from the viewpoints of Logic of Discovery and Machine Learning, and try to unify these two views with the support of the modern theory of Logic Programming. Firstly, we define several hypothesis construction methods in ILP and give their proof-theoretic foundations by treating them as a procedure which complets incomplete proofs. Next, we discuss the design of individual learning algorithms using these hypothesis construction methods. We review known results on learning logic programs in computational learning theory, and show that these algorithms are instances of a generic learning strategy with proof completion methods. key words: logic of discovery, Inductive Logic Programming, Machine Learning

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge Discovery in databases - An Inductive Logic Programming Approach

The need for learning from databases has increased along with their number and size. The new eld of Knowledge Discovery in Databases (KDD) develops methods that discover relevant knowledge in very large databases. Machine learning, statistics, and database methodology contribute to this exciting eld. In this paper, the discovery of knowledge in the form of Horn clauses is described. A case stud...

متن کامل

Multiple Predicate Learning in Two Inductive Logic Programming Settings

Inductive logic programming (ILP) is a research area which has its roots in inductive machine learning and computational logic. The paper gives an introduction to this area based on a distinction between two diierent semantics used in inductive logic programming, and illustrates their application in knowledge discovery and programming. Whereas most research in inductive logic programming has fo...

متن کامل

Autonomous Discovery of Abstract Concepts by a Robot

In this paper we look at the discovery of abstract concepts by a robot autonomously exploring its environment and learning the laws of the environment. By abstract concepts we mean concepts that are not explicitly observable in the measured data, such as the notions of obstacle, stability or a tool. We consider mechanisms of machine learning that enable the discovery of abstract concepts. Such ...

متن کامل

Learning Uncertain Logic Programs from Examples

Knowledge discovery in databases and machine learning are important areas in the move to ÒintelligentÓ information systems. Logic programming is a powerful and flexible framework in this respect, as it allows background knowledge to be expressed and rules to be extracted. Inductive logic programming has had some notable successes. One shortcoming of logic programming is the lack of a convenient...

متن کامل

April - An Inductive Logic Programming System

Inductive Logic Programming (ILP) is a Machine Learning research field that has been quite successful in knowledge discovery in relational domains. ILP systems use a set of pre-classified examples (positive and negative) and prior knowledge to learn a theory in which positive examples succeed and the negative examples fail. In this paper we present a novel ILP system called April, capable of ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000