Hyaluronic Acid-Chitosan Nanoparticles to Deliver Gd-DTPA for MR Cancer Imaging

نویسندگان

  • Li Zhang
  • Tingxian Liu
  • Yanan Xiao
  • Dexin Yu
  • Na Zhang
چکیده

Molecular imaging is essential to increase the sensitivity and selectivity of cancer diagnosis especially at the early stage of tumors. Recently, polyionic nanocomplexes (PICs), which are composed of polyanions and opposite polycations, have been demonstrated to be a promising strategy for biomedical applications. In this work, chitosan-hyaluronic acid nanoparticles (GCHN) were developed to deliver Gd-DTPA as MRI contrast agents for tumor diagnosis. The Gd-labeled conjugates (CS-DTPA-Gd) were successfully synthesized by carbodiimide reaction, and then GCHN were prepared by ionic gelation using the obtained CS-DTPA-Gd and hyaluronic acid. The morphology of GCHN was spherical or ellipsoidal, which is observed by transmission electronic microscopy (TEM). The mean particle size and zeta potential of GCHN were 213.8 ± 2.6 nm and 19.92 ± 1.69 mV, respectively. The significant enhancement of signal intensity induced by GCHN was observed both in vitro and in vivo. Also, compared with Magnevist, GCHN was witnessed for a prolonged imaging time in the B16 tumor-bearing mice model. Furthermore, GCHN were verified as below toxic both in vitro and in vivo. These results indicated that GCHN could potentially be an alternative to current MRI contrast agents for tumor diagnosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrostatically assembled biocompatible polymer nanoparticles for MR/optical dual-modality imaging nanoprobes.

Biocompatible dual-modality imaging nanoprobes were synthesized by the electrostatic assembly of poly(γ-glutamic acid)[Gd-DTPA] and chitosan[IRDye800] and applied for the imaging of immune cells (phagocytic) and cancer cells (non-phagocytic).

متن کامل

Commentary on “A Microfluidic Platform to Design Crosslinked Hyaluronic Acid Nanoparticles (cHANPs) for Enhanced MRI”

Strategies to enhance the relaxometric properties of gadolinium (Gd)-based contrast agents (CAs) for magnetic resonance imaging (MRI), without the chemical modification of chelates, have recently had a strong impact on the diagnostic field. We have taken advantage of the interaction between Gadolinium diethylenetriamine penta-acetic acid (Gd-DTPA) and the hydrogel structure of hyaluronic acid t...

متن کامل

Gadolinium-Diethylenetriaminepenta-Acetic acid Conjugated with Monoclonal Antibody C595 as New Magnetic Resonance Imaging Contrast Agents for Breast Cancer (MCF-7) Detection

Background: The monoclonal antibody, C595, against breast cancer cell line was conjugated with cyclic anhydride gadolinium-diethylenetriaminepenta-acetic acid (Gd-cDTPAa) to produce Gd-DTPA-C595 and used as specific breast cancer cell line (MCF-7) contrast agents in magnetic resonance imaging (MRI).  Methods: After incubation of breast cancer cell line (MCF-7), with different contrast agents (G...

متن کامل

Toxicity evaluation of Gd2O3@SiO2 nanoparticles prepared by laser ablation in liquid as MRI contrast agents in vivo

Poor toxicity characterization is one obstacle to the clinical deployment of Gd2O3@ SiO2 core-shell nanoparticles (Gd-NPs) for use as magnetic resonance (MR) imaging contrast agents. To date, there is no systematic toxicity data available for Gd-NPs prepared by laser ablation in liquid. In this article, we systematically studied the Gd-NPs' cytotoxicity, apoptosis in vitro, immunotoxicity, bloo...

متن کامل

Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent

Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid-polyethylene glycol/gadolinium-diethylenetriamine-pentaacetic acid (PLA-PEG/Gd-DTPA) nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI) contrast agent. The PLA-PEG/Gd-DTPA nanocomplexes were obtained usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015