Nonlinear Model Predictive Control for the Polymorphic Transformation of L-Glutamic Acid Crystals

نویسندگان

  • Martin Wijaya Hermanto
  • Min-Sen Chiu
  • Richard D. Braatz
چکیده

Polymorphism, a phenomenon where a substance can have more than one crystal forms, has recently become a major interest to the food, speciality chemical, and pharmaceutical industries. The different physical properties for polymorphs such as solubility, morphology, and dissolution rate may jeopardize operability or product quality, resulting in significant effort in controlling crystallization processes to ensure consistent production of the desired polymorph. Here, a nonlinear model predictive control (NMPC) strategy is developed for the polymorphic transformation of L-glutamic acid from the metastable a-form to the stable b-form crystals. The robustness of the proposed NMPC strategy to parameter perturbations is compared with temperature control (T-control), concentration control (C-control), and quadratic matrix control with successive linearization (SL-QDMC). Simulation studies show that T-control is the least robust, whereas C-control performs very robustly but long batch times may be required. SL-QDMC performs rather poorly even when there is no plant-model mismatch due to the high process nonlinearity, rendering successive linearization inaccurate. The NMPC strategy shows good overall robustness for two different control objectives, which were both within 7% of their optimal values, while satisfying all constraints on manipulated and state variables within the specified batch time. VC 2009 American Institute of Chemical Engineers AIChE J, 55: 2631–2645, 2009

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated Batch-to-Batch and Nonlinear Model Predictive Control for Polymorphic Transformation in Pharmaceutical Crystallization

Polymorphism, a phenomenon in which a substance can have more than one crystal form, is a frequently encountered phenomenon in pharmaceutical compounds. Different polymorphs can have very different physical properties such as crystal shape, solubility, hardness, color, melting point, and chemical reactivity, so that it is important to ensure consistent production of the desired polymorph. In th...

متن کامل

Robust Bayesian Estimation of Kinetics for the Polymorphic Transformation of L-Glutamic Acid Crystals

Polymorphism, in which there exist different crystal forms for the same chemical compound, is an important phenomenon in pharmaceutical manufacturing. In this article, a kinetic model for the crystallization of L-glutamic acid polymorphs is developed from experimental data. This model appears to be the first to include all of the transformation kinetic parameters including dependence on the tem...

متن کامل

Selective Crystallization of Metastable α-Form of L- glutamic Acid through Feedback Concentration Control

Polymorphism is described as the ability of a compound to adopt different crystalline arrangements. Although chemically identical, different polymorphic structures display a variation in its physical properties such as crystal morphology, density, solubility, and color. These in turn exert an influence on the performance of the product; for example, the bioavailability and shelf-life of pharmac...

متن کامل

Controlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm

Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...

متن کامل

Robust Model Predictive Control for a Class of Discrete Nonlinear systems

This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009