Thalamocortical response transformations in simulated whisker barrels.

نویسندگان

  • H T Kyriazi
  • D J Simons
چکیده

Layer IV of rodent somatosensory cortex contains identifiable networks of neurons, called "barrels," that are related one-to-one to individual whiskers on the face. A previous study (Simons and Carvell, 1989) described differences between the response properties of thalamic and cortical vibrissa neurons and proposed that these transformations can be explained by several features of barrel anatomy and physiology: nonlinear neuronal properties, strongly responsive inhibitory and less responsive excitatory neurons, convergent thalamic inputs to cells of both types, and interconnections among barrel neurons. In the present study these features were incorporated into a computational model in order to test their explanatory power quantitatively. The relative numbers of excitatory and inhibitory cells and the relative numbers of synapses of thalamic and intrabarrel origin were chosen to be consistent with available light and electron microscopic data. Known functional differences between excitatory and inhibitory barrel neurons were simulated through differences in spike activation functions, refractory periods, postsynaptic potential decay rates, and synaptic strengths. The model network was activated by spike trains recorded previously from thalamic neurons in response to three different whisker deflection protocols, and output, which consisted of spikes generated by the simulated neurons, was compared to data from our previous neurophysiological experiments. For each type of whisker stimulus, the same set of parameter values yielded accurate simulations of the cortical response. Realistic output was obtained under conditions where each barrel cell integrated excitatory and inhibitory synaptic inputs from a number of thalamic and other barrel neurons and where the ratios between network excitation, network inhibition, and thalamic excitation were approximately constant. Several quantities are defined that may be generally useful in characterizing neuronal networks. One important implication of the results is that thalamic relay neurons not only provide essential drive to the cortex but could, by changing their tonic activities, also directly regulate the tonic inhibition present in the cortex and thereby modulate cortical receptive field properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weaker feedforward inhibition accounts for less pronounced thalamocortical response transformation in mouse vs. rat barrels.

Feedforward inhibition is a common motif of thalamocortical circuits. Strong engagement of inhibitory neurons by thalamic inputs enhances response differentials between preferred and nonpreferred stimuli. In rat whisker-barrel cortex, robustly driven inhibitory barrel neurons establish a brief epoch during which synchronous or near-synchronous thalamic firing produces larger responses to prefer...

متن کامل

Thalamocortical response transformation in the rat vibrissa/barrel system.

1. Extracellular single-unit recordings and controlled whisker stimuli were used to compare response properties between cells in the "barreloids" of the thalamic ventrobasal complex and those in the cytochrome oxidase-rich centers of the "barrels" in the first somatic sensory cortex. Individual vibrissae were deflected alone or in paired combination involving the neuron's maximally excitatory w...

متن کامل

Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex.

In the whisker-barrel system, layer IV excitatory neurons respond preferentially to high-velocity deflections of their principal whisker, and these responses are inhibited by deflections of adjacent whiskers. Thalamic input neurons are amplitude and velocity sensitive and have larger excitatory and weaker inhibitory receptive fields than cortical neurons. Computational models based on known fea...

متن کامل

Somatotopic organization of rat thalamocortical slices.

The thalamocortical slice is widely employed for in vitro studies of cortical circuits. This preparation was developed in order to preserve anatomical and functional connectivity between the ventrobasal thalamus and somatosensory (whisker/barrel) cortex of young mice, and thalamocortical slice experiments have contributed significantly to our understanding of the thalamocortical synapse. Cortic...

متن کامل

Topological precision in the thalamic projection to neonatal mouse barrel cortex.

Somatosensory thalamus and cortex in rodents contain topological representations of the facial whisker pad. The thalamic representation of a single whisker ("barreloid") is presumed to project exclusively to the cortical representation ("barrel") of the same whisker; however, it was not known when this correspondence is established during early development, nor how precise the thalamocortical p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 13 4  شماره 

صفحات  -

تاریخ انتشار 1993