Genus Distribution for a Graph
نویسندگان
چکیده
In this paper we develop the technique of a distribution decomposition for a graph. A formula is given to determine genus distribution of a cubic graph. Given any connected graph, it is proved that its genus distribution is the sum of those for some cubic graphs by using the technique.
منابع مشابه
LPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring
Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...
متن کاملThe sum-annihilating essential ideal graph of a commutative ring
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
متن کاملMinimum Tenacity of Toroidal graphs
The tenacity of a graph G, T(G), is dened by T(G) = min{[|S|+τ(G-S)]/[ω(G-S)]}, where the minimum is taken over all vertex cutsets S of G. We dene τ(G - S) to be the number of the vertices in the largest component of the graph G - S, and ω(G - S) be the number of components of G - S.In this paper a lower bound for the tenacity T(G) of a graph with genus γ(G) is obtained using the graph's connec...
متن کاملClassification of rings with toroidal annihilating-ideal graph
Let R be a non-domain commutative ring with identity and A(R) be theset of non-zero ideals with non-zero annihilators. We call an ideal I of R, anannihilating-ideal if there exists a non-zero ideal J of R such that IJ = (0).The annihilating-ideal graph of R is defined as the graph AG(R) with the vertexset A(R) and two distinct vertices I and J are adjacent if and only if IJ =(0). In this paper,...
متن کاملGenus distribution of graph amalgamations: Pasting when one root has arbitrary degree
This paper concerns counting the imbeddings of a graph in a surface. In the first installment of our current work, we showed how to calculate the genus distribution of an iterated amalgamation of copies of a graph whose genus distribution is already known and is further analyzed into a partitioned genus distribution (which is defined for a double-rooted graph). Our methods were restricted there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013