A Bayesian Model for False Information Belief Impact, Optimal Design, and Fake News Containment
نویسندگان
چکیده
This work is a technical approach to modeling false information nature, design, belief impact and containment in multi-agent networks. We present a Bayesian mathematical model for source information and viewer’s belief, and how the former impacts the latter in a media (network) of broadcasters and viewers. Given the proposed model, we study how a particular information (true or false) can be optimally designed into a report, so that on average it conveys the most amount of the original intended information to the viewers of the network. Consequently, the model allows us to study susceptibility of a particular group of viewers to false information, as a function of statistical metrics of the their prior beliefs (e.g. bias, hesitation, open-mindedness, credibility assessment etc.). In addition, based on the same model we can study false information “containment” strategies imposed by network administrators. Specifically, we study a credibility assessment strategy, where every disseminated report must be within a certain distance of the truth. We study the trade-off between false and true information-belief convergence using this scheme which leads to ways for optimally deciding how truth sensitive an information dissemination network should operate.
منابع مشابه
An Efficient Bayesian Optimal Design for Logistic Model
Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...
متن کاملbelief function and the transferable belief model
Beliefs are the result of uncertainty. Sometimes uncertainty is because of a random process and sometimes the result of lack of information. In the past, the only solution in situations of uncertainty has been the probability theory. But the past few decades, various theories of other variables and systems are put forward for the systems with no adequate and accurate information. One of these a...
متن کاملFake News in Social Networks
We model the spread of news as a social learning game on a network. Agents can either endorse or oppose a claim made in a piece of news, which itself may be either true or false. Agents base their decision on a private signal and their neighbors’ past actions. Given these inputs, agents follow strategies derived via multi-agent deep reinforcement learning and receive utility from acting in acco...
متن کاملGreen Supply Chain Risk Network Management and Performance Analysis: Bayesian Belief Network Modeling
With the increase in environmental awareness, competitions and government policies, implementation of green supply chain management activities to sustain production and conserve resources is becoming more necessary for different organizations. However, it is difficult to successfully implement green supply chain (GSC) activities because of the risks involved. These risks alongside their resourc...
متن کاملProject Portfolio Risk Response Selection Using Bayesian Belief Networks
Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018