Oscillations at the Si/electrolyte contact: Discretization of phase oscillators

نویسندگان

  • Fumika Suzuki
  • J Grzanna
چکیده

The origin of sustained current oscillations at the Si/electrolyte contact is not fully understood. Oscillatory functions are regarded which describe the oscillating oxide thickness at the silicon electrode. We consider an initially vanishing two-dimensional time dependent function which oscillates between a minimum and a maximum oxide thickness at each location of the electrode. The function is continuous except at single points of the electrode at which the oxide thickness drops deeply due to the formation of nanopores in the oxide. The oscillatory function is represented by a set of infinite (infinitesimal) oscillators. The mathematical model is based on the fact that it is sufficient to register the oscillators only one time per i-th cycle at their minimum or when the phase of the oscillator equals i 2π. In phase-space representation, the passing of the phase trough the i 2π planes leads to oscillator density functions pi(t) which define the (differential) number of oscillators passing their minimum at the i-th time at the time t. Two consecutive oscillator density functions are connected by an integral equation representing a Markov process. Together with a local model for the oxide microstructure, a fit of the model parameter to the measured current is possible. The result is that the existence of two types of oxides (with different nanopore densities) can explain sustained current oscillations and, further, it is possible to calculate the mean nanopore distance in both types of oxide.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillations at the Si/electrolyte contact: Relation to Quantum Mechanics

The basic process at the surface of the Si electrode is characterized by a cyclic oxidation of a thin silicon layer and the subsequent removal of the oxide by etching. Here, the oxide thickness evolves not uniformly due to cracks and nanopores. The mathematical model used to describe the phenomenon is based on a sequence of time dependent (oxide thickness) oscillator density functions that desc...

متن کامل

A Phase Noise Reduction Technique in LC Cross-coupled Oscillators with Adjusting Transistors Operating Regions

In this paper, an intuitive analysis of a phase noise reduction technique is done, and then a modified structure is proposed to achieve higher phase noise reduction than the original one. This method reduces the impact of noise sources on the phase noise by decreasing closed-loop gain in zero-crossings points and moving this high closed-loop gain to the non-zero-crossings points. This reduction...

متن کامل

Engineering of synchronization and clustering of a population of chaotic chemical oscillators.

Description, control, and design of weakly interacting dynamical units are challenging tasks that play a central role in many physical, chemical, and biological systems. Control of temporal and spatial variations of reaction rates is especially daunting when the dynamical units exhibit deterministic chaotic oscillations that are sensitive to initial conditions and are long-term unpredictable. C...

متن کامل

Improved Thermal Stability of NiSi Nanolayer in Ni-Si Co-sputtered Structure

Electrical, structural and morphological properties of Ni silicide films formed in Ni(Pt 4at.% )/Si(100) and Ni0.6Si0.4(Pt4at.% )/Si(100) structures at various annealing temperatures ranging from 200 to 1000 oC were studied. The Ni(Pt) and Ni0.6Si0.4(Pt) films with thickness of 15 and 25 nm were deposited by RF magnetron co-sputtering method, respectively.  The annealing process of the structur...

متن کامل

Analysis of Oscillation Amplitude and Phase Error in Multiphase LC Oscillators

Abstract   This work proposes a novel method to find the phase error and oscillation amplitude in multiphase LC oscillators. A mathematical approach is used to find the relationship between every stage's output phase and its coupling factor. To much more general analysis, every stage assumed to have a different coupling factor. The mismatches in LC tanks are considered as the main source of pha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012