Maximum Dissipation Principle for Designing Numerical Method in Complex Fluids

نویسنده

  • Yunkyong Hyon
چکیده

I will talk about the general energetic variational approaches for hydrodynamic systems of complex fluids. In these energetic variational approaches, the least action principle (LAP) with action functional gives the Hamiltonian parts (conservative force) of the hydrodynamic systems, and the maximum/minimum dissipation principle (MDP), i.e., Onsager’s principle, gives the dissipative parts (dissipative force) of the systems. When we combine the two systems derived from the two different principles through the force balance law, we obtain a whole coupled nonlinear system of equations satisfying the dissipative energy laws. Also, I will discuss the important roles of MDP in designing numerical method for computations of hydrodynamic system in complex fluids. The MDP is employed in the reformulated dissipation to obtain the dissipative force for the hydrodynamic system. The systems are consistent with the Hamiltonian parts which are derived from LAP. This procedure allows the usage of lower order element (a continuous C finite element) in numerical method to solve the system rather than high order elements, and at the same time preserves the dissipative energy law. Finally, I will show some numerical results of the free interface motion in the mixture of two different fluids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ENERGETIC VARIATIONAL APPROACH IN COMPLEX FLUIDS: MAXIMUM DISSIPATION PRINCIPLE By Yunkyong

We discuss the general energetic variational approaches for hydrodynamic systems of complex fluids. In these energetic variational approaches, the least action principle (LAP) with action functional gives the Hamiltonian parts (conservative force) of the hydrodynamic systems, and the maximum/minimum dissipation principle (MDP), i.e., Onsager's principle, gives the dissipative parts (dissipative...

متن کامل

A Maximum Entropy Principle Based Closure Method for Macro-micro Models of Polymeric Materials

We consider the finite extensible nonlinear elasticity (FENE) dumbbell model in viscoelastic polymeric fluids. We employ the maximum entropy principle for FENE model to obtain the solution which maximizes the entropy of FENE model in stationary situations. Then we approximate the maximum entropy solution using the second order terms in microscopic configuration field to get an probability densi...

متن کامل

Influence of Slope and the Number of Steps on Energy Dissipation in Stepped Spillway Using Numerical Model

Recently the stepped spillways have been used as an appropriate solution for energy dissipation. In the present study, Siahbisheh dam spillway is simulated by using Computational Fluid Dynamic (CFD), in which the Mixture method and Reynolds Stresses Model (RSM) turbulence model is used. In the first modeling series the over all steppes slope is constant. The number of the steps is increased to ...

متن کامل

Modeling Contact Friction and Joint Friction in Dynamic Robotic Simulation Using the Principle of Maximum Dissipation

We present a unified treatment for modeling Coulomb and viscous friction within multi-rigid body simulation using the principle of maximum dissipation. This principle is used to build two different methods—an event-driven impulse-based method and a time stepping method—for modeling contact. The same principle is used to effect joint friction in articulated mechanisms. Experiments show that the ...

متن کامل

Fully Discretized Energy Stable Schemes for Hydrodynamic Equations Governing Two-Phase Viscous Fluid Flows

We develop systematically a numerical approximation strategy to discretize a hydrodynamic phase field model for a binary fluid mixture of two immiscible viscous fluids, derived using the generalized Onsager principle that warrants not only the variational structure but also the energy dissipation property. We first discretize the governing equations in space to arrive at a semi-discretized, tim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010