Astrocyte-Specific Genes Are Generally Demethylated in Neural Precursor Cells Prior to Astrocytic Differentiation

نویسندگان

  • Izuho Hatada
  • Masakazu Namihira
  • Sumiyo Morita
  • Mika Kimura
  • Takuro Horii
  • Kinichi Nakashima
چکیده

Epigenetic changes are thought to lead to alterations in the property of cells, such as differentiation potential. Neural precursor cells (NPCs) differentiate only into neurons in the midgestational brain, yet they become able to generate astrocytes in the late stage of development. This differentiation-potential switch could be explained by epigenetic changes, since the promoters of astrocyte-specific marker genes, glial fibrillary acidic protein (Gfap) and S100beta, have been shown to become demethylated in late-stage NPCs prior to the onset of astrocyte differentiation; however, whether demethylation occurs generally in other astrocyctic genes remains unknown. Here we analyzed DNA methylation changes in mouse NPCs between the mid-(E11.5) and late (E14.5) stage of development by a genome-wide DNA methylation profiling method using microarrays and found that many astrocytic genes are demethylated in late-stage NPCs, enabling the cell to become competent to express these genes. Although these genes are already demethylated in late-stage NPCs, they are not expressed until cells differentiate into astrocytes. Thus, late-stage NPCs have epigenetic potential which can be realized in their expression after astrocyte differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Astrocyte-Conditioned Medium (ACM) and Retinoic Acid on Neural Differentiation of Mouse Embryonic Stem Cells

Purpose: The aim of this research was to study the properties of factors secreted from astrocyte cells in suspension medium in direct differentiation of mouse embryonic stem cells into neural cells. Materials and Methods: Royan B1 mouse embryonic stem (ES) cells were used in this experiment. For differentiation of Es cells into the neural cells, the astrocyte-condition medium (ACM) of mouse fe...

متن کامل

Committed neuronal precursors confer astrocytic potential on residual neural precursor cells.

During midgestation, mammalian neural precursor cells (NPCs) differentiate only into neurons. Generation of astrocytes is prevented at this stage, because astrocyte-specific gene promoters are methylated. How the subsequent switch from suppression to expression of astrocytic genes occurs is unknown. We show in this study that Notch ligands are expressed on committed neuronal precursors and youn...

متن کامل

Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells

Human neural precursor cells (hNPCs) derived from pluripotent stem cells display a high propensity for neuronal differentiation, but they require long-term culturing to differentiate efficiently into astrocytes. The mechanisms underlying this biased fate specification of hNPCs remain elusive. Here, we show that hypoxia confers astrocytic differentiation potential on hNPCs through epigenetic gen...

متن کامل

Induction of Human Embryonic Stem Cells into neuronal differentiation by increasing cyclic Adenosine Mono Phosphate

Introduction: To evaluate the cAMP -mediated IBMX (3-IsoButyle -1-Methyl Xanthin) and db-cAMP (dibutyryl cAMP) effects on differentiation of human Embryonic Stem Cells (hESCs) into nerve cells were the objectives of this study. Methods: We have used Royan H1 hESC- derived embryoid bodies with four treatment groups: six days treatment with IBMX (5×10 -4M) and db-cAMP (10 -9M) (referred to as...

متن کامل

Harvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells

In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008