Incremental Encoding and Solving of Cardinality Constraints

نویسندگان

  • Sven Reimer
  • Matthias Sauer
  • Tobias Schubert
  • Bernd Becker
چکیده

Traditional SAT-based MaxSAT solvers encode cardinality constraints directly as part of the CNF and solve the entire optimization problem by a sequence of iterative calls of the underlying SAT solver. The main drawback of such approaches is their dependence on the number of soft clauses: The more soft clauses the MaxSAT instance contains, the larger is the CNF part encoding the cardinality constraints. To counter this drawback, we introduce an innovative encoding of cardinality constraints: Instead of translating the entire and probably bloated constraint network into CNF, a divide-and-conquer approach is used to encode partial constraint networks successively. The resulting subproblems are solved and merged incrementally, reusing not only intermediate local optima, but also additional constraints which are derived from solving the individual subproblems by the back-end SAT solver. Extensive experimental results for the last MaxSAT evaluation benchmark suitew demonstrate that our encoding is in general smaller compared to existing methods using a monolithic encoding of the constraints and converges faster to the global optimum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Using Incremental Encodings in Unsatisfiability-based MaxSAT Solving

In recent years, unsatisfiability-based algorithms have become prevalent as state of the art for solving industrial instances of Maximum Satisfiability (MaxSAT). These algorithms perform a succession of unsatisfiable SAT solver calls until an optimal solution is found. In several of these algorithms, cardinality or pseudo-Boolean constraints are extended between iterations. However, in most cas...

متن کامل

Incremental Cardinality Constraints for MaxSAT

Maximum Satisfiability (MaxSAT) is an optimization variant of the Boolean Satisfiability (SAT) problem. In general, MaxSAT algorithms perform a succession of SAT solver calls to reach an optimum solution making extensive use of cardinality constraints. Many of these algorithms are non-incremental in nature, i.e. at each iteration the formula is rebuilt and no knowledge is reused from one iterat...

متن کامل

Full CNF Encoding: The Counting Constraints Case

Many problems are naturally expressed using CNF clauses and boolean cardinality constraints. It is generally believed that solving such problems through pure CNF encoding is inefficient, so many authors has proposed specialized algorithms : the pseudo-boolean solvers. In this paper we show that an appropriate pure CNF encoding can be competitive with these specialized methods. In conjunction wi...

متن کامل

Native Cardinality Constraints: More Expressive, More Efficient Constraints

Boolean cardinality constraints are commonly translated (encoded) into Boolean CNF, a standard form for Boolean satisfiability problems, which can be solved using a standard SAT solving program. However, cardinality constraints are a simple generalization of clauses, and the complexity entailed by encoding them into CNF can be avoided by reasoning about cardinality constraints natively within a...

متن کامل

QMaxSAT: A Partial Max-SAT Solver

We present a partial Max-SAT solver QMaxSAT which uses CNF encoding of Boolean cardinality constraints. The old version 0.1 was obtained by adapting a CDCL based SAT solver MiniSat to manage cardinality constraints. It was placed first in the industrial subcategory and second in the crafted subcategory of partial Max-SAT category of the 2010 Max-SAT Evaluation. The new version 0.2 is obtained b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014