miRNAs As Emerging Regulators of Oligodendrocyte Development and Differentiation
نویسندگان
چکیده
Chronic demyelination is a hallmark of neurological disorders such as multiple sclerosis (MS) and several leukodystrophies. In the central nervous system (CNS), remyelination is a regenerative process that is often inadequate during these pathological states. In the MS context, in situ evidence suggests that remyelination is mediated by populations of oligodendrocyte progenitor cells (OPCs) that proliferate, migrate, and differentiate into mature, myelin-producing oligodendrocytes at sites of demyelinated lesions. The molecular programming of OPCs into mature oligodendrocytes is governed by a myriad of complex intracellular signaling pathways that modulate this process. Recent research has demonstrated the importance of specific and short non-coding RNAs, known as microRNAs (miRNAs), in regulating OPC differentiation and remyelination. Fortunately, it may be possible to take advantage of numerous developmental studies (both human and rodent) that have previously characterized miRNA expression profiles from the early neural progenitor cell to the late myelin-producing oligodendrocyte. Here we review much of the work to date and discuss the impact of miRNAs on OPC and oligodendrocyte biology. Additionally, we consider the potential for miRNA-mediated therapy in the context of remyelination and brain repair.
منابع مشابه
MicroRNA-Mediated Control of Oligodendrocyte Differentiation
MicroRNAs (miRNAs) regulate various biological processes, but evidence for miRNAs that control the differentiation program of specific neural cell types has been elusive. To determine the role of miRNAs in the formation of myelinating oligodendrocytes, we selectively deleted a miRNA-processing enzyme, Dicer1, in oligodendrocyte lineage cells. Mice lacking Dicer1 display severe myelinating defic...
متن کاملFine-Tuning Oligodendrocyte Development by microRNAs
Myelination of axons by oligodendrocytes in the central nervous system is essential for normal neuronal functions. The failure of remyelination due to injury or pathological insults results in devastating demyelinating diseases. Oligodendrocytes originate in restricted regions of the embryonic ventral neural tube. After migration to populate all areas of the brain and spinal cord, oligodendrocy...
متن کاملMicroRNAs: Critical Regulators of mRNA Traffic and Translational Control with Promising Biotech and Therapeutic Applications
Context:MicroRNAs (miRNAs) are a class of short, endogenously-initiated, non-coding RNAs that post-transcriptionally control gene expression via translational repression or mRNA turnover. MiRNAs have attracted much attention in recent years as they play critical roles in gene expression and are promising tools with many biotech and therapeutic applications. The molecular mechanisms und...
متن کاملDiagnostic Utility of miRNAs in Cancer
Cancer is the one of most prevalent and leading causes of death in the world. Current ad­vancements in technology improve the understanding of the pathogenesis and pathology of cancers. But, due to enlarging mortality rates, poor prognosis, and lacunae in clinical early predictive biomarkers provide an important momentum to investigate novel early diagnos­tic/prognostic markers and spec...
متن کاملDiagnostic Utility of miRNAs in Cancer
Cancer is the one of most prevalent and leading causes of death in the world. Current ad­vancements in technology improve the understanding of the pathogenesis and pathology of cancers. But, due to enlarging mortality rates, poor prognosis, and lacunae in clinical early predictive biomarkers provide an important momentum to investigate novel early diagnos­tic/prognostic markers and spec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2016