Extensions of interpolation between the arithmetic-geometric mean inequality for matrices

نویسندگان

  • Mojtaba Bakherad
  • Rahmatollah Lashkaripour
  • Monire Hajmohamadi
چکیده

In this paper, we present some extensions of interpolation between the arithmetic-geometric means inequality. Among other inequalities, it is shown that if A, B, X are [Formula: see text] matrices, then [Formula: see text] where [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] are non-negative continuous functions such that [Formula: see text] and [Formula: see text] ([Formula: see text]). We also obtain the inequality [Formula: see text] in which m, n, s, t are real numbers such that [Formula: see text], [Formula: see text] is an arbitrary unitarily invariant norm and [Formula: see text].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolating between the Arithmetic-Geometric Mean and Cauchy-Schwarz matrix norm inequalities

We prove an inequality for unitarily invariant norms that interpolates between the Arithmetic-Geometric Mean inequality and the Cauchy-Schwarz inequality.

متن کامل

A Relationship between Subpermanents and the Arithmetic-Geometric Mean Inequality

Using the arithmetic-geometric mean inequality, we give bounds for k-subpermanents of nonnegative n × n matrices F. In the case k = n, we exhibit an n 2-set S whose arithmetic and geometric means constitute upper and lower bounds for per(F)/n!. We offer sharpened versions of these bounds when F has zero-valued entries.

متن کامل

Commentary on "Toward a Noncommutative Arithmetic-geometric Mean Inequality: Conjectures, Case-studies, and Consequences"

In their paper, Recht and Ré have presented conjectures and consequences of noncommutative variants of the arithmetic mean-geometric mean (AM-GM) inequality for positive definite matrices. Let A1, . . . , An be a collection of positive semidefinite matrices and i1, . . . , ik be random indices in {1, . . . , n}. To avoid symmetrization issues that arise since matrix products are non-commutative...

متن کامل

A Determinantal Inequality for the Geometric Mean with an Application in Diffusion Tensor Imaging

We prove that for positive semidefinite matrices A and B the eigenvalues of the geometric mean A#B are log-majorised by the eigenvalues of A1/2B1/2. From this follows the determinantal inequality det(I + A#B) ≤ det(I + A1/2B1/2). We then apply this inequality to the study of interpolation methods in diffusion tensor imaging.

متن کامل

Best Upper Bounds Based on the Arithmetic-geometric Mean Inequality

In this paper we obtain a best upper bound for the ratio of the extreme values of positive numbers in terms of the arithmetic-geometric means ratio. This has immediate consequences for condition numbers of matrices and the standard deviation of equiprobable events. It also allows for a refinement of Schwarz’s vector inequality.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017