Evaluating Noisy Optimisation Algorithms: First Hitting Time is Problematic

نویسندگان

  • Simon M. Lucas
  • Jialin Liu
  • Diego Pérez-Liébana
چکیده

A key part of any evolutionary algorithm is fitness evaluation. When fitness evaluations are corrupted by noise, as happens in many real-world problems as a consequence of various types of uncertainty, a strategy is needed in order to cope with this. Resampling is one of the most common strategies, whereby each solution is evaluated many times in order to reduce the variance of the fitness estimates. When evaluating the performance of a noisy optimisation algorithm, a key consideration is the stopping condition for the algorithm. A frequently used stopping condition in runtime analysis, known as “First Hitting Time”, is to stop the algorithm as soon as it encounters the optimal solution. However, this is unrealistic for real-world problems, as if the optimal solution were already known, there would be no need to search for it. This paper argues that the use of First Hitting Time, despite being a commonly used approach, is significantly flawed and overestimates the quality of many algorithms in real-world cases, where the optimum is not known in advance and has to be genuinely searched for. A better alternative is to measure the quality of the solution an algorithm returns after a fixed evaluation budget, i.e., to focus on final solution quality. This paper argues that focussing on final solution quality is more realistic and demonstrates cases where the results produced by each algorithm evaluation method lead to very different conclusions regarding the quality of each noisy optimisation algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite First Hitting Time versus Stochastic Convergence in Particle Swarm Optimisation

We reconsider stochastic convergence analyses of particle swarm optimisation, and point out that previously obtained parameter conditions are not always sufficient to guarantee mean square convergence to a local optimum. We show that stagnation can in fact occur for non-trivial configurations in non-optimal parts of the search space, even for simple functions like Sphere. The convergence proper...

متن کامل

Towards an analytic framework for analysing the computation time of evolutionary algorithms

In spite of many applications of evolutionary algorithms in optimisation, theoretical results on the computation time and time complexity of evolutionary algorithms on different optimisation problems are relatively few. It is still unclear when an evolutionary algorithm is expected to solve an optimisation problem efficiently or otherwise. This paper gives a general analytic framework for analy...

متن کامل

Advances in Metaheuristics Luca

We reconsider stochastic convergence analyses of particle swarm optimisation, and point out that previously obtained parameter conditions are not always sufficient to guarantee mean square convergence to a local optimum. We show that stagnation can in fact occur for non-trivial configurations in non-optimal parts of the search space, even for simple functions like SPHERE. The convergence proper...

متن کامل

Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase

Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...

متن کامل

A Characterization of the First Hitting Time of Double Integral Processes to Curved Boundaries

The problem of finding the probability distribution of the first hitting time of a Double Integral Process (DIP) such as the Integrated Wiener Proces (IWP) has been an important and difficult endeavor in stochastic calculus. It has applications in many fields of physics (first exit time of a particle in a noisy force field) or in biology and neuroscience (spike time distribution of an integrate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1706.05086  شماره 

صفحات  -

تاریخ انتشار 2017