Weighted Norm Inequalities, Off-diagonal Estimates and Elliptic Operators Part Ii: Off-diagonal Estimates on Spaces of Homogeneous Type Pascal Auscher and José

نویسنده

  • MARÍA MARTELL
چکیده

This is the second part of a series of four articles on weighted norm inequalities, off-diagonal estimates and elliptic operators. We consider a substitute to the notion of pointwise bounds for kernels of operators which usually is a measure of decay. This substitute is that of off-diagonal estimates expressed in terms of local and scale invariant L − L estimates. We propose a definition in spaces of homogeneous type that is stable under composition. It is particularly well suited to semigroups. We study the case of semigroups generated by elliptic operators. J. Evol. Equ. 7 (2007), 265--316

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Part Ii: Off-diagonal Estimates on Spaces of Homogeneous Type Pascal Auscher and José María Martell

This is the second part of a series of four articles on weighted norm inequalities, off-diagonal estimates and elliptic operators. We consider a substitute to the notion of pointwise bounds for kernels of operators which usually is a measure of decay. This substitute is that of off-diagonal estimates expressed in terms of local and scale invariant L − L estimates. We propose a definition in spa...

متن کامل

Weighted Norm Inequalities, Off-diagonal Estimates and Elliptic Operators Part Iii: Harmonic Analysis of Elliptic Operators Pascal Auscher and José

This is the third part of a series of four articles on weighted norm inequalities, off-diagonal estimates and elliptic operators. For L in some class of elliptic operators, we study weighted norm L inequalities for singular “non-integral” operators arising from L ; those are the operators φ(L) for bounded holomorphic functions φ, the Riesz transforms ∇L−1/2 (or (−∆)1/2L−1/2) and its inverse L1/...

متن کامل

Weighted Norm Inequalities, Off-diagonal Estimates and Elliptic Operators. Part Iv: Riesz Transforms on Manifolds and Weights Pascal Auscher and José

This is the fourth article of our series. Here, we study weighted norm inequalities for the Riesz transform of the Laplace-Beltrami operator on Riemannian manifolds and of subelliptic sum of squares on Lie groups, under the doubling volume property and Gaussian upper bounds. Math. Z. 260 (2008), no. 3, 527--539

متن کامل

Weighted Norm Inequalities, Off-diagonal Estimates and Elliptic Operators Part I: General Operator Theory and Weights Pascal Auscher and José

This is the first part of a series of four articles. In this work, we are interested in weighted norm estimates. We put the emphasis on two results of different nature: one is based on a good-λ inequality with two parameters and the other uses Calderón-Zygmund decomposition. These results apply well to singular “non-integral” operators and their commutators with bounded mean oscillation functio...

متن کامل

2 8 M ar 2 00 6 WEIGHTED NORM INEQUALITIES , OFF - DIAGONAL ESTIMATES AND ELLIPTIC OPERATORS

This is the third part of a series of four articles on weighted norm inequalities, off-diagonal estimates and elliptic operators. For L in some class of elliptic operators, we study weighted norm L inequalities for singular “non-integral” operators arising from L ; those are the operators φ(L) for bounded holomorphic functions φ, the Riesz transforms ∇L−1/2 (or (−∆)1/2L−1/2) and its inverse L1/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007