Propagation of Current Waves along Quasi-Periodical Thin-Wire Structures: Accounting of Radiation Losses

نویسندگان

  • Jürgen Nitsch
  • Sergey Tkachenko
چکیده

The homogeneous problem of current propagation along a thin wire of arbitrary geometric form near ground is reduced use of the Full-Wave Transmission Line Theory [8-10] to a Schrödinger-like differential equation, with a “potential” depending on both the geometry of the wire and frequency. The “potential” is a complex – valued quantity that corresponds to either radiation losses in the framework of electrodynamics or to the absorption of particles in the framework of quantum mechanics. If the wire structure is quasi periodical, i.e., it consists of a finite number of identical sections, the “potential” can be approximately represented as a set of periodically arranged identical potentials. We use the formalism of transfer matrices and find an analytical expression for the transmission coefficient of the finite number of periodically located non-uniformities which also contains the scattering data of one nonuniformity. The obtained result yields the possibility to investigate forbidden and allowed frequency zones which are a typical feature of periodic structure. ______________________________________________________ This work was sponsored by the Research Institute for Protective Technologies and NBC Protection –WIS – Munster under the contract number E/E590/3X045/1F037.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guided propagation of terahertz pulses on metal wires

We demonstrate a new waveguiding structure for terahertz (THz) radiation in which broadband THz pulses are confined and guided along a bare metal wire. The propagation of THz pulses on such a waveguide is characterized with a fiber-coupled terahertz time-domain spectroscopy system. Free-space THz radiation is coupled onto the waveguide at different positions along the wire, and spatially resolv...

متن کامل

Nanophotonic devices on thin buried oxide Silicon-On-Insulator substrates.

We demonstrate a silicon photonic platform using thin buried oxide silicon-on-insulator (SOI) substrates using localized substrate removal. We show high confinement silicon strip waveguides, micro-ring resonators and nanotapers using this technology. Propagation losses for the waveguides using the cutback method are 3.88 dB/cm for the quasi-TE mode and 5.06 dB/cm for the quasi-TM mode. Ring res...

متن کامل

Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides.

Seeking better plasmonic waveguides is of critical importance for minimizing photonic circuits into the nanometer scale. We have made a theoretical study of the properties of surface plasmon polaritons in a metallic nanowire over substrate (NWOS) configuration. The dielectric substrate breaks the symmetry of the system and mediates the coupling of different primary wire plasmons. The lowest ord...

متن کامل

Free vibration and buckling analysis of third-order shear deformation plate theory using exact wave propagation approach

In this paper, wave propagation approach is used to analysis the free vibration and buckling analysis of the thick rectangular plates based on higher order shear deformation plate theory. From wave viewpoint, vibrations can be considered as traveling waves along structures. Waves propagate in a waveguide and reflect at the boundaries. It is assumed that the plate has two opposite edge simply su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006