Incorporating Prior Knowledge in Image Reconstruction through the Choice of the Hilbert Space and Inner Product

نویسنده

  • Charles Byrne
چکیده

The problem is to reconstruct a function f : R → C from finitely many linear functional values. To model the operator that transforms f into the data vector, we need to select an ambient space containing f . Typically, we choose a Hilbert space. The selection of the inner product provides an opportunity to incorporate prior knowledge about f into the reconstructon. The inner product induces a norm and our reconstruction is the function, consistent with the data, for which this norm is minimized. The method is illustrated using Fourier-transform data and prior knowledge about the support of f and about its overall shape. 1 The Basic Problem We want to reconstruct a function f : R → C from finitely many linear functional values, g1, ..., gN . Although we may reasonably view f as part of objective reality, once we embed f in a Hilbert space we are imposing theory that, while reasonable, is not given a priori, and is not part of objective reality. As we shall see, the selection of the ambient Hilbert space provides one of the few opportunities we have to incorporate prior knowledge about f , and therefore is an important step in the reconstruction. Because the problem is highly underdetermined, there will be infinitely many reconstructions consistent with the finite data. A common approach to solving such problems is to select the reconstruction with the smallest norm; how we select the norm in the first place is the important step.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME PROPERTIES OF FUZZY HILBERT SPACES AND NORM OF OPERATORS

In the present paper we define the notion of fuzzy inner productand study the properties of the corresponding fuzzy norm. In particular, it isshown that the Cauchy-Schwarz inequality holds. Moreover, it is proved thatevery such fuzzy inner product space can be imbedded in a complete one andthat every subspace of a fuzzy Hilbert space has a complementary subspace.Finally, the notions of fuzzy bo...

متن کامل

A Comparative Study of Fuzzy Inner Product Spaces

In the present paper, we investigate a connection between two fuzzy inner product one of which arises from Felbin's fuzzy norm and the other is based on Bag and Samanta's fuzzy norm. Also we show that, considering a fuzzy inner product space, how one can construct another kind of fuzzy inner product on this space.

متن کامل

$C^{*}$-semi-inner product spaces

In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.

متن کامل

Frames in 2-inner Product Spaces

In this paper, we introduce the notion of a frame in a 2- inner product space and give some characterizations. These frames can be considered as a usual frame in a Hilbert space, so they share many useful properties with frames.

متن کامل

Linear Image Reconstruction from a Sparse Set of alpha-Scale Space Features by Means of Inner Products of Sobolev Type

Inner products of Sobolev type are extremely useful for image reconstruction of images from a sparse set of -scale space features. The common (non)-linear reconstruction frameworks, follow an Euler Lagrange minimization. If the Lagrangian (prior) is a norm induced by an inner product of a Hilbert space, this Euler Lagrange minimization boils down to a simple orthogonal projection within the cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006